Abstract:
A method and a system for transmitting enforceable instructions in a vehicle control (VC) system includes receiving, by a cyclic redundancy check (CRC) calculator, at least one enforceable instruction from vehicle systems. The CRC calculator calculates at least one enforceable instruction CRC based at least partly on the at least one enforceable instruction and transmits the at least one enforceable instruction CRC to a back office server of the VC system and/or an on-board system of a vehicle. Methods for cyclic redundancy check (CRC) hazard mitigation in a vehicle control (VC) system and verifying enforceable instruction data on-board a vehicle are also disclosed.
Abstract:
A method and a system for transmitting enforceable instructions in a positive train control (PTC) system includes receiving, by a cyclic redundancy check (CRC) calculator, at least one enforceable instruction from railroad systems. The CRC calculator calculates at least one enforceable instruction CRC based at least partly on the at least one enforceable instruction and transmits the at least one enforceable instruction CRC to a back office server of the PTC system and/or an on-board system of a locomotive. Methods for cyclic redundancy check (CRC) hazard mitigation in a positive train control (PTC) system and verifying enforceable instruction data on-board a train are also disclosed.
Abstract:
Disclosed are a computer-implemented method for determining safety factors or a safety factor formula for use in a braking model of at least one train, a computer-implemented method for determining a plurality of safety factors for use in a braking model of at least one train, and braking systems for use on trains.
Abstract:
A method and a system for transmitting enforceable instructions in a vehicle control (VC) system includes receiving, by a cyclic redundancy check (CRC) calculator, at least one enforceable instruction from vehicle systems. The CRC calculator calculates at least one enforceable instruction CRC based at least partly on the at least one enforceable instruction and transmits the at least one enforceable instruction CRC to a back office server of the VC system and/or an on-board system of a vehicle. Methods for cyclic redundancy check (CRC) hazard mitigation in a vehicle control (VC) system and verifying enforceable instruction data on-board a vehicle are also disclosed.
Abstract:
A method and a system for transmitting enforceable instructions in a positive train control (PTC) system includes receiving, by a cyclic redundancy check (CRC) calculator, at least one enforceable instruction from railroad systems. The CRC calculator calculates at least one enforceable instruction CRC based at least partly on the at least one enforceable instruction and transmits the at least one enforceable instruction CRC to a back office server of the PTC system and/or an on-board system of a locomotive. Methods for cyclic redundancy check (CRC) hazard mitigation in a positive train control (PTC) system and verifying enforceable instruction data on-board a train are also disclosed.
Abstract:
A method and a system for transmitting enforceable instructions in a vehicle control (VC) system includes receiving, by a cyclic redundancy check (CRC) calculator, at least one enforceable instruction from vehicle systems. The CRC calculator calculates at least one enforceable instruction CRC based at least partly on the at least one enforceable instruction and transmits the at least one enforceable instruction CRC to a back office server of the VC system and/or an on-board system of a vehicle. Methods for cyclic redundancy check (CRC) hazard mitigation in a vehicle control (VC) system and verifying enforceable instruction data on-board a vehicle are also disclosed.
Abstract:
A method and a system for transmitting enforceable instructions in a positive train control (PTC) system includes receiving, by a cyclic redundancy check (CRC) calculator, at least one enforceable instruction from railroad systems. The CRC calculator calculates at least one enforceable instruction CRC based at least partly on the at least one enforceable instruction and transmits the at least one enforceable instruction CRC to a back office server of the PTC system and/or an on-board system of a locomotive. Methods for cyclic redundancy check (CRC) hazard mitigation in a positive train control (PTC) system and verifying enforceable instruction data on-board a train are also disclosed.