Abstract:
A method and a system for transmitting enforceable instructions in a vehicle control (VC) system includes receiving, by a cyclic redundancy check (CRC) calculator, at least one enforceable instruction from vehicle systems. The CRC calculator calculates at least one enforceable instruction CRC based at least partly on the at least one enforceable instruction and transmits the at least one enforceable instruction CRC to a back office server of the VC system and/or an on-board system of a vehicle. Methods for cyclic redundancy check (CRC) hazard mitigation in a vehicle control (VC) system and verifying enforceable instruction data on-board a vehicle are also disclosed.
Abstract:
A system for maintaining brake cylinder pressure includes a brake cylinder passage configured to be in fluid communication with a brake cylinder, a brake pipe passage configured to be in fluid communication with a brake pipe and a brake cylinder, a first valve member moveable between a first position and a second position, and a second valve member in fluid communication with a reference pressure. The second valve member is configured to move the first valve member from the first position to the second position based on a differential between a pressure within the brake cylinder passage and the reference pressure, where the brake pipe passage is configured to only supply air from a brake pipe to a brake cylinder when the first valve member is in the second position.
Abstract:
Disclosed is a data recorder unit and system for a vehicle. The system includes at least one video camera device configured to generate video data associated with the vehicle and/or its surroundings, and wirelessly transmit at least a portion of the video data. The data recorder unit includes a data recorder enclosure, a data processing unit located in the enclosure and configured to: wirelessly receive at least a portion of the video data from the at least one video camera device, process at least a portion of the video data, and generate processed video data based at least partially on the video data, and at least one storage device comprising at least one crash-hardened memory in communication with the at least one data processing unit and configured to store at least a portion of at least one of the video data and the processed video data.
Abstract:
A train network management system for a train having a locomotive and railcars, including a node computer on the railcar and communicating with a high-speed network device for receiving and transmitting data over a high-speed network, and a locomotive computer on the locomotive and communicating with a high-speed network device for receiving and transmitting data over the high-speed network, where a communication path is generated between at least two high-speed network devices of the railcars and the high-speed network device of the locomotive, such that high-speed data communication is provided between the high-speed network devices of the railcars and the locomotive. A railcar network unit is also disclosed.
Abstract:
A system and method for detecting broken rails in a track of parallel rails includes at least one first broken rail detection module configured to measure a current through the track and a central control system configured to determine a location of at least one train on the track. The at least one first broken rail detection module is configured to send the central control system a signal based on the measured current. The central control office is configured to determine if a broken rail exists on the track and/or a location of the broken rail on the track based at least partially on the measured current and the location of the at least one train on the track.
Abstract:
An apparatus and method for detecting faults in a two-wire electric power line isolated from ground includes substantially identical high impedance voltage dividers connected between each of the two wires of the power line and ground, circuits for carrying the output voltages from each voltage divider, a circuit for comparing the output voltages, and outputting a fault signal indicative of a ground fault.
Abstract:
A railway vehicle brake system includes at least two relay valves in electrical communication with one another and in fluid communication with a brake pipe, at least two friction brake units in fluid communication with each relay valve, and at least one electric brake unit in electrical communication with each relay valve. Upon a failure of one of the electric brake units, the relay valve in communication with the failed electric brake unit sends a signal to at least one other relay valve to provide pressurized fluid to the at least two friction brake units in fluid communication with the at least one other relay valve. The at least two relay valves may include integrated electric relay valves. The at least two friction brake units may include disc brake units. Each relay valve may be positioned between and in fluid communication with the brake pipe and a main reservoir pipe.
Abstract:
A computer-implemented method for an air brake system of a train with an air brake system, including: (i) determining consist data associated with the train; (ii) determining track data comprising location data and grade data; (iii) determining required train holding force based at least partially on the consist data and the track data; and (iv) determining hand brake arrangement actuation data based at least partially on the required train holding force. An improved hand brake arrangement is also disclosed.
Abstract:
A system for maintaining brake cylinder pressure includes a brake cylinder passage configured to be in fluid communication with a brake cylinder, a brake pipe passage configured to be in fluid communication with a brake pipe and a brake cylinder, a first valve member moveable between a first position and a second position, and a second valve member in fluid communication with a reference pressure. The second valve member is configured to move the first valve member from the first position to the second position based on a differential between a pressure within the brake cylinder passage and the reference pressure, where the brake pipe passage is configured to only supply air from a brake pipe to a brake cylinder when the first valve member is in the second position.
Abstract:
A train network management system for a train having a locomotive and railcars, including a node computer on the railcar and communicating with a high-speed network device for receiving and transmitting data over a high-speed network, and a locomotive computer on the locomotive and communicating with a high-speed network device for receiving and transmitting data over the high-speed network, where a communication path is generated between at least two high-speed network devices of the railcars and the high-speed network device of the locomotive, such that high-speed data communication is provided between the high-speed network devices of the railcars and the locomotive. A railcar network unit is also disclosed.