摘要:
Methods, media, and systems for detecting attack are provided. In some embodiments, the methods include: comparing at least part of a document to a static detection model; determining whether attacking code is included in the document based on the comparison of the document to the static detection model; executing at least part of the document; determining whether attacking code is included in the document based on the execution of the at least part of the document; and if attacking code is determined to be included in the document based on at least one of the comparison of the document to the static detection model and the execution of the at least part of the document, reporting the presence of an attack. In some embodiments, the methods include: selecting a data segment in at least one portion of an electronic document; determining whether the arbitrarily selected data segment can be altered without causing the electronic document to result in an error when processed by a corresponding program; in response to determining that the arbitrarily selected data segment can be altered, arbitrarily altering the data segment in the at least one portion of the electronic document to produce an altered electronic document; and determining whether the corresponding program produces an error state when the altered electronic document is processed by the corresponding program.
摘要:
In one embodiment, a video encoder having a first and second phase of motion estimation, and scene change and 3:2 pull-down detection components is provided. In another embodiment, the first phase of motion estimation determines a set of field motion vectors to execute the scene change and 3:2 pull-down detection components. In another embodiment, the scene change and 3:2 pull-down detection component, and the second phase of the motion estimation occur after the first phase of motion estimation.
摘要:
A partitioned shift right logic circuit that is programmable and contains rounding support. The circuit of the present invention accepts a 32-bit value and a shift amount and then performs a right shift operation on the 32-bits and automatically rounds the result(s). Signed or unsigned values can be accepted. The right shift circuit is partitioned so that the 32-bit value can represent: (1) a single 32-bit number; or (2) two 16-bit values. A 1 bit selection input indicates the particular partition format. In operation, if the input value is not negative, then one (“1”) is added at the guard bit position and a right shift with truncate is performed. If the input is negative and the guard bit is zero, then no addition is done and a right shift with truncate is performed. If the input is negative and the guard bit is one and the sticky bit is zero, then no addition is done and a right shift with truncate is performed. If the input is negative and the guard bit is one and the sticky bit is one, then one is added at the guard bit position and a right shift with truncate is performed. The shift circuitry used by the present invention is fully partitioned to accept word or half-word input and contains multiple cascaded multiplexer stages for performing partitioned right shifting and supports signed shifting. Each multiplexer stage can be programmed to perform a selected shift amount (including 0 shift). The right shift circuit of the present invention can be used in multi-media applications and can also be used for general purpose and VLIW (very long instruction word) processor without performance degradation.
摘要:
Methods, media, and systems for detecting attack are provided. In some embodiments, the methods include: comparing at least part of a document to a static detection model; determining whether attacking code is included in the document based on the comparison of the document to the static detection model; executing at least part of the document; determining whether attacking code is included in the document based on the execution of the at least part of the document; and if attacking code is determined to be included in the document based on at least one of the comparison of the document to the static detection model and the execution of the at least part of the document, reporting the presence of an attack. In some embodiments, the methods include: selecting a data segment in at least one portion of an electronic document; determining whether the arbitrarily selected data segment can be altered without causing the electronic document to result in an error when processed by a corresponding program; in response to determining that the arbitrarily selected data segment can be altered, arbitrarily altering the data segment in the at least one portion of the electronic document to produce an altered electronic document; and determining whether the corresponding program produces an error state when the altered electronic document is processed by the corresponding program.
摘要:
In one embodiment, a 3:2 pull-down detection component of a video encoder uses motion vectors to determine whether a repeated field exists in a video sequence. The 3:2 pull-down detection component uses field motion vectors determined by a motion estimator and compares the field motion vectors to a threshold to determine whether a repeated field exists. If a repeated field exists, a video encoder can then eliminate the repeated field.
摘要:
An efficient digital video (DV) decoder process that utilizes a specially constructed quantization matrix allowing an inverse quantization subprocess to perform parallel computations, e.g., using SIMD processing, to efficiently produce a matrix of DCT coefficients. The present invention utilizes a first look-up table (for 8×8 DCT) which produces a 15-valued quantization scale based on class number information and a QNO number for an 8×8 data block (“data matrix”) from an input encoded digital bit stream to be decoded. The 8×8 data block is produced from a deframing and variable length decoding subprocess. An individual 8-valued segment of the 15-value output array is multiplied by an individual 8-valued segment, e.g., “a row,” of the 8×8 data matrix to produce an individual row of the 8×8 matrix of DCT coefficients (“DCT matrix”). The above eight multiplications can be performed in parallel using a SIMD architecture to simultaneously generate a row of eight DCT coefficients. In this way, eight passes through the 8×8 block are used to produce the entire 8×8 DCT matrix, in one embodiment consuming only 33 instructions per 8×8 block. After each pass, the 15-valued output array is shifted by one value position for proper alignment with its associated row of the data matrix. The DCT matrix is then processed by an inverse discrete cosine transform subprocess that generates decoded display data. A second lookup table can be used for 2×4×8 DCT processing.