Abstract:
A method of ionizing a liquid is disclosed herein. The method includes the steps of dispensing an electrically conductive liquid onto an electrically conductive membrane so as to form a liquid film on the surface of the membrane, applying an electrical charge to the liquid film on the membrane, generating ultrasonic waves to vibrate the membrane so as to induce capillary waves in the liquid film, and electrostatically attracting the electrically charged crests in the capillary waves so that electrically charged droplets are extracted from the capillary waves and accelerated therefrom for emission. The method is generally utile in various applications including, for example, spacecraft propulsion, paint spray techniques, semiconductor fabrication, biomedical processes, and the like. In addition to the above-described method, an electrostatic colloid thruster for implementing the method is disclosed herein as well.
Abstract:
A method of ionizing a liquid propellant is disclosed herein. The method includes the steps of applying an electrical charge to a showerhead, delivering a liquid propellant under pressure into a chamber defined within the showerhead, and emitting the liquid propellant under pressure through a plurality of micro-nozzles interspaced within the face of the showerhead to create a plurality of jets that collectively produce an electrospray having charged particles. An electric thruster that implements such a method is also disclosed herein. The thruster includes a showerhead having an inlet and a plurality of micro-nozzles, a reservoir for supplying propellant to the showerhead via the inlet, means for accelerating charged particles, and a power source connected to the showerhead and the accelerating means. The propellant is emitted under pressure from the micro-nozzles to produce an electrospray having charged particles. The charged particles are accelerated by the accelerating means to produce thrust.
Abstract:
A method of ionizing a liquid propellant is disclosed herein. The method includes the steps of applying an electrical charge to a showerhead, delivering a liquid propellant under pressure into a chamber defined within the showerhead, and emitting the liquid propellant under pressure through a plurality of micro-nozzles interspaced within the face of the showerhead to create a plurality of jets that collectively produce an electrospray having charged particles. An electric thruster that implements such a method is also disclosed herein. The thruster includes a showerhead having an inlet and a plurality of micro-nozzles, a reservoir for supplying propellant to the showerhead via the inlet, means for accelerating charged particles, and a power source connected to the showerhead and the accelerating means. The propellant is emitted under pressure from the micro-nozzles to produce an electrospray having charged particles. The charged particles are accelerated by the accelerating means to produce thrust.
Abstract:
An electrostatic colloid thruster for implementing a method of ionizing a liquid is disclosed herein. The electrostatic colloid thruster includes an electrically conductive extractor having a plurality of holes defined therethrough; an ultrasonic atomizer having an electrically conductive atomization surface at least partially facing the extractor and being arranged relative thereto so as to define a gap; a reservoir system in fluid communication with the atomization surface; and an electrical power source in electrical communication with both the extractor and the atomization surface. The apparatus and method are generally utile in various applications including, for example, spacecraft propulsion, paint spray techniques, semiconductor fabrication, biomedical processes, and the like.
Abstract:
A method of ionizing a liquid is disclosed herein. The method includes the steps of dispensing an electrically conductive liquid onto an electrically conductive membrane so as to form a liquid film on the surface of the membrane, applying an electrical charge to the liquid film on the membrane, generating ultrasonic waves to vibrate the membrane so as to induce capillary waves in the liquid film, and electrostatically attracting the electrically charged crests in the capillary waves so that electrically charged droplets are extracted from the capillary waves and accelerated therefrom for emission. The method is generally utile in various applications including, for example, spacecraft propulsion, paint spray techniques, semiconductor fabrication, biomedical processes, and the like. In addition to the above-described method, an electrostatic colloid thruster for implementing the method is disclosed herein as well.