摘要:
An integrated circuit device that includes a plurality of multiple gate FinFETs (MuGFETs) is disclosed. Fins of different crystal orientations for PMOS and NMOS MuGFETs are formed through amorphization and crystal regrowth on a direct silicon bonded (DSB) hybrid orientation technology (HOT) substrate. PMOS MuGFET fins are formed with channels defined by fin sidewall surfaces having (110) crystal orientations. NMOS MuGFET fins are formed with channels defined by fin sidewall surfaces having (100) crystal orientations in a Manhattan layout with the sidewall channels of the different PMOS and NMOS MuGFETs aligned at 0° or 90° rotations.
摘要:
A method of forming an integrated circuit device that includes a plurality of MuGFETs is disclosed. A PMOS fin of a MuGFET is formed on a substrate. The PMOS fin includes a channel of a first surface of a first crystal orientation. A NMOS fin of another MuGFET is formed on the substrate. The NMOS fin includes a channel on the substrate at one of 0° and 90° to the PMOS fin and includes a second surface of a second crystal orientation.
摘要:
A method of forming an integrated circuit device that includes a plurality of MuGFETs is disclosed. A PMOS fin of a MuGFET is formed on a substrate. The PMOS fin includes a channel of a first surface of a first crystal orientation. A NMOS fin of another MuGFET is formed on the substrate. The NMOS fin includes a channel on the substrate at one of 0° and 90° to the PMOS fin and includes a second surface of a second crystal orientation.
摘要:
An integrated circuit device that includes a plurality of multiple gate FinFETs (MuGFETs) is disclosed. Fins of different crystal orientations for PMOS and NMOS MuGFETs are formed through amorphization and crystal regrowth on a direct silicon bonded (DSB) hybrid orientation technology (HOT) substrate. PMOS MuGFET fins are formed with channels defined by fin sidewall surfaces having (110) crystal orientations. NMOS MuGFET fins are formed with channels defined by fin sidewall surfaces having (100) crystal orientations in a Manhattan layout with the sidewall channels of the different PMOS and NMOS MuGFETs aligned at 0° or 90° rotations.
摘要:
A method of forming an integrated circuit device that includes a plurality of multiple gate FinFETs (MuGFETs) is disclosed. Fins of different crystal orientations for PMOS and NMOS MuGFETs are formed through amorphization and crystal regrowth on a direct silicon bonded (DSB) hybrid orientation technology (HOT) substrate. PMOS MuGFET fins are formed with channels defined by fin sidewall surfaces having (110) crystal orientations. NMOS MuGFET fins are formed with channels defined by fin sidewall surfaces having (100) crystal orientations in a Manhattan layout with the sidewall channels of the different PMOS and NMOS MuGFETs aligned at 0° or 90° rotations.
摘要:
A method of forming an integrated circuit device that includes a plurality of multiple gate FinFETs (MuGFETs) is disclosed. Fins of different crystal orientations for PMOS and NMOS MuGFETs are formed through amorphization and crystal regrowth on a direct silicon bonded (DSB) hybrid orientation technology (HOT) substrate. PMOS MuGFET fins are formed with channels defined by fin sidewall surfaces having (110) crystal orientations. NMOS MuGFET fins are formed with channels defined by fin sidewall surfaces having (100) crystal orientations in a Manhattan layout with the sidewall channels of the different PMOS and NMOS MuGFETs aligned at 0° or 90° rotations.
摘要:
A method for semiconductor processing provides a DSB semiconductor body having a first crystal orientation, a second crystal orientation, and a border region disposed between the first and second crystal orientations. The border region further has a defect associated with an interface of the first crystal orientation and second the second crystal orientation, wherein the defect generally extends a distance into the semiconductor body from a surface of the body. A sacrificial portion of the semiconductor body is removed from the surface thereof, wherein removing the sacrificial portion at least partially removes the defect. The sacrificial portion can be defined by oxidizing the surface at low temperature, wherein the oxidation at least partially consumes the defect. The sacrificial portion can also be removed by CMP. An STI feature may be further formed over the defect after removal of the sacrificial portion, therein consuming any remaining defect.
摘要:
A device and method of reducing residual STI corner defects in a hybrid orientation transistor comprising, forming a direct silicon bonded substrate wherein a second silicon layer with a second crystal orientation is bonded to a handle substrate with a first crystal orientation, forming a pad oxide layer on the second silicon layer, forming a nitride layer on the pad oxide layer, forming an isolation trench within the direct silicon bonded substrate through the second silicon layer and into the handle substrate, patterning a PMOS region of the direct silicon bonded substrate utilizing photoresist including a portion of the isolation trench, implanting and amorphizing an NMOS region of the direct silicon bonded substrate, removing the photoresist, performing solid phase epitaxy, performing a recrystallization anneal, forming an STI liner, completing front end processing, and performing back end processing.
摘要:
A device and method of reducing residual STI corner defects in a hybrid orientation transistor comprising, forming a direct silicon bonded substrate wherein a second silicon layer with a second crystal orientation is bonded to a handle substrate with a first crystal orientation, forming a pad oxide layer on the second silicon layer, forming a nitride layer on the pad oxide layer, forming an isolation trench within the direct silicon bonded substrate through the second silicon layer and into the handle substrate, patterning a PMOS region of the direct silicon bonded substrate utilizing photoresist including a portion of the isolation trench, implanting and amorphizing an NMOS region of the direct silicon bonded substrate, removing the photoresist, performing solid phase epitaxy, performing a recrystallization anneal, forming an STI liner, completing front end processing, and performing back end processing.
摘要:
A device and method of reducing residual STI corner defects in a hybrid orientation transistor comprising, forming a direct silicon bonded substrate wherein a second silicon layer with a second crystal orientation is bonded to a handle substrate with a first crystal orientation, forming a pad oxide layer on the second silicon layer, forming a nitride layer on the pad oxide layer, forming an isolation trench within the direct silicon bonded substrate through the second silicon layer and into the handle substrate, patterning a PMOS region of the direct silicon bonded substrate utilizing photoresist including a portion of the isolation trench, implanting and amorphizing an NMOS region of the direct silicon bonded substrate, removing the photoresist, performing solid phase epitaxy, performing a recrystallization anneal, forming an STI liner, completing front end processing, and performing back end processing.