Abstract:
A hydrogen molecule remixing device includes a base (10), a first gas and water channelling disc (30), an anode (40), a cathode (60), an ion membrane (50), a second gas and water channelling disc (70), a cover (80), a cationic water outlet connector (85) and a connector (90). In practice, the source water is electrolyzed in the anode cavities of the anode to form oxygen molecules, ozone and anionic water, and electrolyzed in the cathode cavities of the cathode to form hydrogen molecules and cationic water. The hydrogen molecules are carried by the cationic water into the collecting and guiding chambers of the second gas and water channelling disc, so that the hydrogen molecules and the cationic water produce an blending reaction, and more hydrogen molecules are dissolved into the cationic water.
Abstract:
Electrolytic equipment in the form of radiation mode that is provided with pluralities of baffles (13) in the form of radiation mode on the top surface of the seat (10) and acidic water passage (131) is formed between the baffles (13). The top surface of the seat (10) has through holes (14) used to make anode conduction portions (33) of anode plate (30) through. In the center of the seat (10), there is a socket joint portion (11) that is provided with an inlet and outlet interval tube (15) in the center of it. There are plurality of equidistributed baffles (151, 157) on the inside wall and the outside wall of the inlet and outlet interval tube (15) to form raw water inlet passage (152) and acidic water outlet passage (153). There are protuberant ribs (16) for separating water inside of the seat (10) corresponding to the location for separating water around the anode plate (30) and the cathode plate (40), which are used to separate alkaline water and acidic water electrolyzed from the anode plate (30) and the cathode plate (40). Alkaline water passage (631) is formed on the bottom surface of the lid (60) and the center of 11d (60) is provided with alkaline water outlet joint (61).
Abstract:
A locating system of oxidation/reduction potential of the electrolysis water and the constant output method of calibration and compensation thereof are disclosed. Thus, the voltage of the electrolytic bath can be regulated so as to control an electrolytic current of the electrolytic bath exactly, so that the electrolytic current of the electrolytic bath is maintained at a constant value.
Abstract:
An electrolytic magnetization device has an outer pipe, an anode tube, a diaphragm, a cathode tube, an insulating tube, and a water flow controller. A cover and a base seat cover an upper end of the outer pipe and a lower end of the outer pipe respectively. The cover has a water outlet. The base seat has a through hole and a water inlet. The anode tube is disposed in the outer pipe. The diaphragm is disposed in the anode tube. A hollow pipe is disposed in the diaphragm. The insulating tube is disposed in the hollow pipe. The water flow controller has an inlet joint connected to the water inlet, a main body disposed beneath the inlet joint, a flow control post having a water passage, a water pressure stabilizer, an automatic switch device, a water drain device, a first outlet joint, and a second outlet joint. The automatic switch device has a switch seat. A micromotion switch is disposed on the switch seat.
Abstract:
A hydrogen molecule remixing device includes a base, a first gas and water channelling disc, an anode, a cathode, an ion membrane, a second gas and water channelling disc, a cover, a cationic water outlet connector and a connector. In practice, the source water is electrolyzed in the anode cavities of the anode to form oxygen molecules, ozone and anionic water, and electrolyzed in the cathode cavities of the cathode to form hydrogen molecules and cationic water. The hydrogen molecules are carried by the cationic water into the collecting and guiding chambers of the second gas and water channelling disc, so that the hydrogen molecules and the cationic water produce a blending reaction, and more hydrogen molecules are dissolved into the cationic water.
Abstract:
Electrolytic equipment in the form of radiation mode that is provided with pluralities of baffles (13) in the form of radiation mode on the top surface of the seat (10) and acidic water passage (131) is formed between the baffles (13). The top surface of the seat (10) has through holes (14) used to make anode conduction portions (33) of anode plate (30) through. In the center of the seat (10), there is a socket joint portion (11) that is provided with an inlet and outlet interval tube (15) in the center of it. There are plurality of equidistributed baffles (151, 157) on the inside wall and the outside wall of the inlet and outlet interval tube (15) to form raw water inlet passage (152) and acidic water outlet passage (153). There are protuberant ribs (16) for separating water inside of the seat (10) corresponding to the location for separating water around the anode plate (30) and the cathode plate (40), which are used to separate alkaline water and acidic water electrolyzed from the anode plate (30) and the cathode plate (40). Alkaline water passage (631) is formed on the bottom surface of the lid (60) and the center of lid (60) is provided with alkaline water outlet joint (61).