摘要:
A plurality of individual thin wall, arcuate (e.g. airfoil shaped) core elements are formed in respective master dies to have integral interlocking locating features, the individual core elements are prefired in respective ceramic setter supports to have integral locating features, the prefired core elements are assembled together using the locator features of adjacent core elements, and the assembled core elements are adhered together using ceramic adhesive introduced at internal joints defined between mating interlocked locating features. The multi-wall ceramic core assembly so produced comprises the plurality of spaced apart thin wall, arcuate core elements and joined together by at the internal joints defined between the adhered interlocked locating features.
摘要:
A method of making a casting having an internal passage involves the steps of forming a core having an external surface configured to form the passage in the casting and having a plurality of integrally formed protrusions extending from the external surface at stressed regions thereof (e.g., thermally stressed regions) prone to be distorted from a master core configuration, and positioning the core in a pattern molding cavity by engagement of the protrusions with rigid walls defining the molding cavity such that the core is conformed substantially to a predetermined and/or empirically determined relationship between the master core configuration and the molding cavity as if the core corresponded to the master core configuration. A fugitive pattern corresponding to the casting to be formed is then molded about the external surface of the core while the core is supported in the aforementioned relationship relative to the molding cavity, whereby the wall thickness of the pattern is controlled about the core. A ceramic shell mold is then invested about the pattern and core such that the protrusions can engage the mold in the event of core movement during subsequent steps.
摘要:
A hollow cast product such as a gas-cooled gas turbine engine blade is formed using a composite core constructed by forming a first core part determinative of the cavity size of the trailing edge blade portion from a first ceramic material and joined to a second core part determinative of the blade cavity for the blade body portion which is formed from a second ceramic material. The first and second ceramic materials can be chosen to have appropriate characteristics grain sizes, flowability, leachability, and/or reactivity characteristics taking into consideration the different dimensional restrictions imposed by the desired blade product. A tongue is formed on the adjoining edge surface of the trailing edge core part, and the trailing edge core part is then inserted into a second die and the body core part is formed, including a complementary groove member which is formed around the tongue member on the trailing edge core part. The joined trailing edge and body core parts can then be sintered to form a composite casting core. Blade trailing edge slot thicknesses of about 0.015 inches or less can be achieved.
摘要:
An impregnated fired porous alumina-based ceramic core for use in an investment shell mold in the casting of molten metals and alloys wherein the core is impregnated with yttria to improve core creep resistance at elevated casting temperatures and times.
摘要:
A composite core for a hollow gas turbine engine blade is constructed by forming a first core part determinative of the cavity size of the trailing edge blade portion from a first ceramic material and joined to a second core part determinative of the blade cavity for the blade body portion which is formed from a second ceramic material. The first and second ceramic materials can be chosen to have appropriate characteristics grain sizes, flowability, leachability, and/or reactivity characteristics taking into consideration the different dimensional restrictions imposed by the desired blade product. A tongue is formed on the adjoining edge surface of the trailing edge core part, and the trailing edge core part is then inserted into a second die and the body core part is formed, including a complementary groove member which is formed around the tongue member on the trailing edge core part. The joined trailing edge and body core parts can then be sintered to form a composite casting core.