Abstract:
An image sensor includes a color filter, an over-coating layer formed on the color filter, and a medium layer formed on the over-coating layer, wherein the medium layer is configured with at least two medium layers of which refractive indices are different from each other.
Abstract:
The present invention relates a CMOS (Complementary Metal Oxide Semiconductor) image sensor capable of improving dynamic range by using an additional driver transistor. The CMOS image sensor according to the present invention has a pixel array which has a plurality of unit pixels each of which includes a photodiode and a fist transistor to act as a source follower buffer amplifier to amplify photogenerated charges accumulated in the photodiode. Also, the CMOS image sensor includes a second transistor for a buffer amplifier to amplify and output a gate input voltage in the unit pixel, wherein an output signal of the first transistor is applied to a gate of the second.
Abstract:
A liquid crystal display device includes a gate line and a data line crossing each other to define a pixel region on a substrate; a thin film transistor connected to the gate and data lines; a pixel electrode in the pixel region and including a first pixel portion which has a plurality of bent portions and first and second pixel protrusion portions protruding from the bent portions alternately in an opposing direction; and a common electrode in the pixel region and including first and second common portions between which the first pixel portion is located, and first and second common protrusion portions protruding from the first and second common portions, respectively, alternately in a direction toward the bent portions.
Abstract:
A CMOS image sensor includes a photodiode, a plurality of transistors for transferring charges accumulated at the photodiode to one column line, and a voltage dropping element connected to a gate electrode of at least one transistor among the plurality of transistors for expanding a saturation region of the transistor by dropping down a gate voltage inputted to the gate electrode of the at least one transistor.
Abstract:
A cathode for a fuel cell includes a gas diffusion layer contacting with a separator having a channel and a catalyst layer interposed between the gas diffusion layer and an electrolyte membrane. The catalyst layer of the cathode has two portions with different water-repelling properties, and a portion of the catalyst layer that does not face a channel has a higher water-repelling property than a portion that faces a channel. This cathode controls water-repelling property of the catalyst layer differently according to locations, so it is possible to keep an amount of moisture in an electrode in a suitable way and to restrain generation of flooding, thereby improving the performance of the cell.
Abstract:
The present invention relates to a method and an apparatus for continuously separating aromatic dialdehyde from a reaction mixture obtained by gas-phase oxidation of dimethylbenzene. The method for continuously separating aromatic dialdehyde includes the steps of congealing aromatic dialdehyde by cooling the gas-phase reaction mixture including the aromatic dialdehyde, which is obtained by gas-phase oxidation of dimethylbenzene, to 5-70° C. and separating the congealed aromatic dialdehyde from the remaining reaction mixture. Using the method and apparatus in accordance with the present invention, aromatic dialdehyde can be effectively and selectively separated from a reaction mixture obtained by gas-phase oxidation of dimethylbenzene in high yield.
Abstract:
An array substrate for a transflective liquid crystal display device includes a substrate, first and second gate lines on the substrate along a first direction, a common line parallel to and between the first and second gate lines, a gate electrode connected to the first gate line, a gate insulating layer on the first and second gate lines, the gate electrode and the common line, a data line over the gate insulating layer and along a second direction, the data line crossing the first and second gate lines to define a pixel region, the pixel region divided into a transmissive area and a reflective area by the common line, a semiconductor layer on the gate insulating layer over the gate electrode, source and drain electrodes over the semiconductor layer and spaced apart each other, a first passivation layer over the data line, the source electrode and the drain electrode substantially all over the substrate, a reflective layer over the first passivation layer in the reflective area, a second passivation layer over the reflective layer and having a flat top surface in the reflective layer, a pixel electrode over the first and second passivation layers and connected to the drain electrode through a drain contact hole, the pixel electrode having a plate shape, a third passivation layer over the pixel electrode, and a common electrode over the third passivation layer substantially all over the substrate, the common electrode having first openings and second openings corresponding to the transmissive area and the reflective area, respectively, wherein the first openings are spaced apart from each other and are parallel to the data line, and the second openings are spaced apart from each other and are slant an a predetermined angle with respect to the data line, wherein first ends of the first openings overlap the second gate line, second ends of the first openings overlap the common line, first ends of the second openings overlap the common line, and second ends of the second openings overlap the first gate line.
Abstract:
A CMOS image sensor includes a photodiode, and a plurality of transistors for transferring charges accumulated at the photodiode to one column line, wherein at least one transistor among the plurality of transistors has a source region wider than a drain region, for increasing a driving current.