Abstract:
A method of manufacturing a three-dimensional object facilitates the removal of support material from the object. The method includes forming at least a portion of a support for the object with support material containing nanoparticles of a material that readily converts microwave energy into heat. The object and support are moved to a position opposite a microwave radiator and the microwave radiator is operated to begin a change of the phase of the portion of the support material containing the nanoparticles before beginning a change of the phase of a portion of the support made from the support material alone. A controller either monitors the expiration of a predetermined time period or a temperature of the object to determine when the microwave radiator operation is terminated.
Abstract:
A method of manufacturing a three-dimensional object is disclosed. The method includes operating a first ejector of a three-dimensional object printer to eject a first material towards a platen to form an object. The method further includes operating a second ejector of the three-dimensional object printer to eject a second material towards the platen to form support for portions of the object, the support being configured to provide support for portions of the object during the operation of the first ejector to form the object, at least one portion of the support having a body with at least one fluid path that connects at least one opening in the body to at least one other opening in the body. The method further includes connecting a fluid source to the at least one fluid path of the support to enable fluid to flow through the at least one fluid path to remove at least an inner portion the support from the object.
Abstract:
A method and structure for a piezoelectric ink jet printhead. The method can include forming a piezoelectric composite from a liquid sol-gel solution. A first layer of the liquid sol-gel solution can be deposited onto a substrate using, for example, a spin coat process, wherein the substrate may be a printhead diaphragm. The first layer may be partially cured, then a second layer of the liquid sol-gel solution can be deposited onto the partially cured first layer, which is then partially cured. Any number of layers of liquid sol-gel solution can be deposited to result in a piezoelectric composite having a suitable thickness. Subsequently, all of the partially cured layers are fully cured. Printhead processing can continue to form a completed piezoelectric ink jet printhead.
Abstract:
Provided is a thermo-pneumatic actuator which can include a substrate, an insulating layer formed on the substrate, a working fluid disposed in a fluid chamber, an ink chamber separated from the fluid chamber by at least a portion of the device layer comprising an actuatable membrane, and a heating element formed between the insulating layer and the fluid chamber. A boiling point temperature of the working fluid in the fluid chamber is in the range of greater than about 100° C. to about 500° C.
Abstract:
An ink jet printhead including a thermo-pneumatic actuator array for ejecting ink from an array of nozzles. The actuator array may include a plurality of channels in fluid communication with a plurality of working fluid chambers. After completing formation of the actuator array, working fluid may be injected into a working fluid inlet on an exterior of the actuator array and into the plurality of working fluid chambers through the plurality of channels.
Abstract:
An ink jet printhead includes a nozzle plate including a nozzle, a recess in the nozzle plate, and a compliant layer that covers the recess and forms a sealed pocket that may be filled with air or another gas during use of the printhead. During actuation of a piezoelectric element during the ejection of ink from the nozzle, the sealed pocket attenuates an acoustic energy generated by the piezoelectric element, thereby reducing crosstalk to adjacent nozzles by the acoustic energy.
Abstract:
A method for printing a three-dimensional crystalline structure such as a chocolate layer wherein, after printing, the material has a desired crystal structure and a plurality of non-random cavities. An embodiment can include printing a liquid first layer of material with a printer onto a second layer of material having a crystal structure. Subsequently, the printed liquid first layer is processed to solidify the first layer. During the processing of the printed liquid first layer, the second layer functions as a crystal seed layer through physical contact with the printed liquid first layer and the second layer crystallizes with the crystal structure. In some embodiments, confections may be formed from high-quality chocolate, where the confection has a reduced caloric content with acceptable mouthfeel. In other embodiments, a confection may have a previously unrealized mouthfeel and taste.
Abstract:
A printer includes a printhead configured to eject high viscosity material and refill a reservoir in the printhead with high viscosity material. The printhead includes a transducer having an electroactive element and a member to which the electroactive element is mounted. An electrical signal activates the electroactive element to move the electroactive element and the member in the reservoir of high viscosity material. This movement thins the high viscosity material and enables the printhead to eject the thinned material while refilling the reservoir. The apertures through which the thinned material is ejected share a common manifold without separate chambers for each of the apertures.
Abstract:
A method of manufacturing a three-dimensional object facilitates the removal of support material from the object. The method includes forming at least a portion of a support for the object with support material containing nanoparticles of a material that readily converts microwave energy into heat. The object and support are moved to a position opposite a microwave radiator and the microwave radiator is operated to begin a change of the phase of the portion of the support material containing the nanoparticles before beginning a change of the phase of a portion of the support made from the support material alone. A controller either monitors the expiration of a predetermined time period or a temperature of the object to determine when the microwave radiator operation is terminated.
Abstract:
A system and method are provided for controlling archival sheet curl formation in image receiving media substrates on which images are formed using aqueous inks as the marking material. Archival curl occurs over time and is based on a partial coverage of the image receiving media substrates by the deposited water-based marking materials. A unique post-processing scheme applies selective aqueous clear fluid onto imaged substrates (cut sheets) to substantially counteract long-term archival curl formation in the individual image receiving media substrates. Both opposing sides of the cut sheet are processed in a manner that causes them to substantially equally undergo the generally irreversible shrinkage phenomenon that leads to archival curl, thus substantially canceling out the archival curl formation mechanism. A clear fluid is applied image-wise to portions of one or both sides of the image receiving media substrates to counterbalance the formed aqueous ink image.