Abstract:
A detection-based segmentation-free method and system for license plate recognition. An image of a vehicle is initially captured utilizing an image-capturing unit. A license plate region is located in the image of the vehicle. A set of characters can then be detected in the license plate region and a geometry correction performed based on a location of the set of characters detected in the license plate region. An operation for sweeping an OCR across the license plate region can be performed to infer characters with respect to the set of characters and locations of the characters utilizing a hidden Markov model and leveraging anchored digit/character locations.
Abstract:
Methods and systems for localizing numbers and characters in captured images. A side image of a vehicle captured by one or more cameras can be preprocessed to determine a region of interest. A confidence value of series of windows within regions of interest of different sizes and aspect ratios containing a structure of interest can be calculated. Highest confidence candidate regions can then be identified with respect to the regions of interest and at least one region adjacent to the highest confidence candidate regions. An OCR operation can then be performed in the adjacent region. An identifier can then be returned from the adjacent region in order to localize numbers and characters in the side image of the vehicle.
Abstract:
A detection-based segmentation-free method and system for license plate recognition. An image of a vehicle is initially captured utilizing an image-capturing unit. A license plate region is located in the image of the vehicle. A set of characters can then be detected in the license plate region and a geometry correction performed based on a location of the set of characters detected in the license plate region. An operation for sweeping an OCR across the license plate region can be performed to infer characters with respect to the set of characters and locations of the characters utilizing a hidden Markov model and leveraging anchored digit/character locations.
Abstract:
A video sequence can be continuously acquired at a predetermined frame rate and resolution by an image capturing unit installed at a location. A video frame can be extracted from the video sequence when a vehicle is detected at an optimal position for license plate recognition by detecting a blob corresponding to the vehicle and a virtual line on an image plane. The video frame can be pruned to eliminate a false positive and multiple frames with respect to a similar vehicle before transmitting the frame via a network. A license plate detection/localization can be performed on the extracted video frame to identify a sub-region with respect to the video frame that are most likely to contain a license plate. A license plate recognition operation can be performed and an overall confidence assigned to the license plate recognition result.
Abstract:
A method for training a vehicle detection system used in a street occupancy estimation of stationary vehicles. The method includes defining first and second areas on an image plane of an image capture device associated with monitoring for detection of vehicles. The method includes receiving video-data from a sequence of frames captured from the image capture device. The method includes determining candidate frames that include objects relevant to a classification task in the second area. The method includes extracting the objects from the candidate frames, extracting features of each extracted object, and assigning labels to the each extracted object. The method includes training at least one classifier using the labels and extracted features. The method includes using the at least one trained classifier to classify a stationary vehicle detected in the first area.
Abstract:
Methods and systems for recognizing a license plate character. Synthetic license plate character images are generated for a target jurisdiction. A limited set of license plate images can be captured for a target jurisdiction utilizing an image-capturing unit. The license plate images are then segmented into license plate character images for the target jurisdiction. The license plate character images collected for the target jurisdiction can be manually labeled. A domain adaptation technique can be utilized to reduce the divergence between synthetically generated and manually labeled target jurisdiction image sets. Additionally, OCR classifiers are trained utilizing the images after the domain adaptation method has been applied. One or more input license plate character images can then be received from the target jurisdiction. Finally, the trained OCR classifier can be employed to determine the most likely labeling for the character image and a confidence associated with the label.
Abstract:
A method for detecting a vehicle running a stop signal positioned at an intersection includes acquiring a sequence of frames from at least one video camera monitoring an intersection being signaled by the stop signal. The method includes defining a first region of interest (ROI) including a road region located before the intersection on the image plane. The method includes searching the first ROI for a candidate violating vehicle. In response to detecting the candidate violating vehicle, the method includes tracking at least one trajectory of the detected candidate violating vehicle across a number of frames. The method includes classifying the candidate violating vehicle as belonging to one of a violating vehicle and a non-violating vehicle based on the at least one trajectory.
Abstract:
An image assisted parking space availability searching and reservation method and system. An image capturing unit can be deployed onsite (e.g., parking lot, street side parking, etc.) to monitor parking spaces/spots. A parking space detection and reservation module can be configured in association with a mobile communications device to assist in the detection and selection of particular spaces. A destination street(s) can be located via a web browser installed associated with the mobile communications device. An IP address of the image-capturing unit monitoring the parking space can be obtained and a snapshot image/video of the street can be displayed. The captured video can be processed in real-time to report parking availability with respect to the street(s) and a parking space reserved.
Abstract:
Methods and systems receive a series of images and compare at least two of the images in the series of images to locate items that are in different positions to identify moving items. Such methods and systems further calculate a measure of the moving items within the series of images. Additionally, such methods and systems perform a continuously variable image correction to remove the moving items from the images to produce a series of corrected images. This “continuously variable image correction” increases the amount of image correction for a relatively higher measure of the moving items and decreases the amount of image correction for a relatively lower measure of the moving items, and does so continuously as the measure of the moving items changes within the series of images.
Abstract:
An image assisted parking space availability searching and reservation method and system. An image capturing unit can be deployed onsite (e.g., parking lot, street side parking, etc.) to monitor parking spaces/spots. A parking space detection and reservation module can be configured in association with a mobile communications device to assist in the detection and selection of particular spaces. A destination street(s) can be located via a web browser installed associated with the mobile communications device. An IP address of the image-capturing unit monitoring the parking space can be obtained and a snapshot image/video of the street can be displayed. The captured video can be processed in real-time to report parking availability with respect to the street(s) and a parking space reserved.