Abstract:
Methods and devices send, from an application to an image processor, an identity of a vehicle parking space and/or an identity of a vehicle parked in the vehicle parking space. Such methods and devices obtain an image of the parked vehicle, using a fixed camera, and send the image to the image processor. These methods and devices then confirm the identity of the vehicle parked in the vehicle parking space, and send a confirmation to the application. These methods and devices display the confirmation on the graphic user interface of the user portable computing device (using the application). These methods and devices automatically end the timed payment session for the vehicle parking space based on images of the scene obtained through the camera showing the identified vehicle not occupying the vehicle parking space, using the image processor.
Abstract:
Systems and methods for aiding on-street parking occupancy detection from a moving device, such as, for example, an automotive vehicle, a bicycle, etc. An optimized route(s) can be pre-selected for scheduling the moving device from one street block to another. A display device displays where the moving device is at the time on the optimized route and selects, for example, the street block, and a recording device that records parking occupancy data. In some embodiments, a GPS module can be provided, which communicates with the recording device to assist in determining the location of the parking occupancy data.
Abstract:
A computer-implemented method, system, and computer-readable medium is disclosed for determining an estimated available parking distance for a vehicle via vehicle side detection in one or more image frames from an operational video. The operational video can be acquired from a fixed parking occupancy video camera and can include a field of view associated with a parking region. The method can include obtaining operational video from a fixed parking occupancy video camera; detecting, within a region of interest (ROI) of the one or more image frames from the operational video, a side of one or more vehicles parked in a parking region facing a traffic lane using a trained classifier that is trained to detect the side of the one or more vehicles; and determining an estimated available parking distance based on the side of the one or more vehicles that are detected.
Abstract:
A method for detecting parking occupancy includes receiving video data from a sequence of frames taken from an associated image capture device monitoring a parking area. The method includes determining at least one candidate region in the parking area. The method includes comparing a size of the candidate region to a size threshold. In response to size of the candidate region meeting and exceeding the size threshold, the method includes determining whether the candidate region includes one of at least one object and no objects. The method includes classifying at least one object in the candidate region as belonging to one of at least two vehicle-types. The method further includes providing vehicle occupancy information to a user.
Abstract:
A method and structure for estimating parking occupancy within an area of interest can include the use of at least two image capture devices and a processor (e.g., a computer) which form at least part of a network. A method for estimating the parking occupancy within the area of interest can include the use of vehicle entry and exit data from the area of interest, as well as an estimated transit time for vehicles transiting through the area of interest without parking.
Abstract:
Methods, systems and processor-readable media for identifying a vehicle for street parking management. An initial identification of one or more vehicles detected parked along a street can be generated based on one or more of a group of factors. The initial identification can be communicated to a user of the vehicle by transmitting an image indicative of the vehicle parked along the street (e.g., via a mobile communications device). An operation can then be implemented for requesting a confirmation or a non-confirmation as to whether the vehicle detected and displayed on the image is associated with the user. Upon confirmation, an operation can be implemented for identifying the at least one vehicle as the initial identification. Upon non-confirmation, an operation can be implemented to query to identify the vehicle associated with the user from among a group of vehicles displayed via the image.
Abstract:
A method for detecting parking occupancy includes receiving video data from a sequence of frames taken from an associated image capture device monitoring a parking area. The method includes determining at least one candidate region in the parking area. The method includes comparing a size of the candidate region to a size threshold. In response to size of the candidate region meeting and exceeding the size threshold, the method includes determining whether the candidate region includes one of at least one object and no objects. The method includes classifying at least one object in the candidate region as belonging to one of at least two vehicle-types. The method further includes providing vehicle occupancy information to a user.
Abstract:
Methods and systems for automatically managing parking payment and enforcement. In general, real-time data regarding vehicles located in a parking zone can be acquired. The number of vehicles in the parking zone can be determined from the acquired real-time data. From such data, the number of vehicles in the parking zone that are paid can be calculated. Then, an operation can be implemented to compare the number of the vehicles in the parking zone with the number of vehicles in the parking zone that are paid with respect to the current time to determine unpaid violations if the number of vehicles in the parking zone exceeds the number of vehicles that are paid.
Abstract:
Provided is a method and system for efficient localization in still images. According to one exemplary method, a sliding window-based 2-D (Dimensional) space search is performed to detect a parked vehicle in a video frame acquired from a fixed parking occupancy video camera including a field of view associated with a parking region.
Abstract:
A system and method for monitoring parking and identifying vehicles by monitoring a parking region based on video data of the parking region received from a video camera, detecting a parking event associated with a vehicle in the parking region, adjusting a view of the video camera based on the parking event, physically tracking the vehicle using the video camera, capturing an image of a license plate of the vehicle, and resuming monitoring the parking region after capturing the image of the license plate.