摘要:
Unlike sound based pressure waves that go everywhere, air turbulence caused by wind is usually a fairly local event. Therefore, in a system that utilizes two or more spatially separated microphones to pick up sound signals (e.g., speech), wind noise picked up by one of the microphones often will not be picked up (or at least not to the same extent) by the other microphone(s). Embodiments of methods and apparatuses that utilize this tact and others to effectively detect and suppress wind noise using multiple microphones that are spatially separated are described.
摘要:
Unlike sound based pressure waves that go everywhere, air turbulence caused by wind is usually a fairly local event. Therefore, in a system that utilizes two or more spatially separated microphones to pick up sound signals (e.g., speech), wind noise picked up by one of the microphones often will not be picked up (or at least not to the same extent) by the other microphone(s). Embodiments of methods and apparatuses that utilize this tact and others to effectively detect and suppress wind noise using multiple microphones that are spatially separated are described.
摘要:
Multi-channel noise suppression systems and methods are described that omit the traditional delay-and-sum fixed beamformer in devices that include a primary speech microphone and at least one noise reference microphone with the desired speech being in the near-field of the device. The multi-channel noise suppression systems and methods use a blocking matrix (BM) to remove desired speech in the input speech signal received by the noise reference microphone to get a “cleaner” background noise component. Then, an adaptive noise canceler (ANC) is used to remove the background noise in the input speech signal received by the primary speech microphone based on the “cleaner” background noise component to achieve noise suppression. The filters implemented by the BM and ANC are derived using closed-form solutions that require calculation of time-varying statistics of complex frequency domain signals in the noise suppression system.
摘要:
Multi-channel noise suppression systems and methods are described that omit the traditional delay-and-sum fixed beamformer in devices that include a primary speech microphone and at least one noise reference microphone with the desired speech being in the near-field of the device. The multi-channel noise suppression systems and methods use a blocking matrix (BM) to remove desired speech in the input speech signal received by the noise reference microphone to get a “cleaner” background noise component. Then, an adaptive noise canceler (ANC) is used to remove the background noise in the input speech signal received by the primary speech microphone based on the “cleaner” background noise component to achieve noise suppression. The filters implemented by the BM and ANC are derived using closed-form solutions that require calculation of time-varying statistics of complex frequency domain signals in the noise suppression system.
摘要:
Described herein are multi-channel noise suppression systems and methods that are configured to detect and suppress wind and background noise using at least two spatially separated microphones: at least one primary speech microphone and at least one noise reference microphone. The multi-channel noise suppression systems and methods are configured, in at least one example, to first detect and suppress wind noise in the input speech signal picked up by the primary speech microphone and, potentially, the input speech signal picked up by the noise reference microphone. Following wind noise detection and suppression, the multi-channel noise suppression systems and methods are configured to perform further noise suppression in two stages: a first linear processing stage that includes a blocking matrix and an adaptive noise canceler, followed by a second non-linear processing stage.
摘要:
Described herein are multi-channel noise suppression systems and methods that are configured to detect and suppress wind and background noise using at least two spatially separated microphones: at least one primary speech microphone and at least one noise reference microphone. The multi-channel noise suppression systems and methods are configured, in at least one example, to first detect and suppress wind noise in the input speech signal picked up by the primary speech microphone and, potentially, the input speech signal picked up by the noise reference microphone. Following wind noise detection and suppression, the multi-channel noise suppression systems and methods are configured to perform further noise suppression in two stages: a first linear processing stage that includes a blocking matrix and an adaptive noise canceler, followed by a second non-linear processing stage.
摘要:
Unlike sound based pressure waves that go everywhere, air turbulence caused by wind is usually a fairly local event. Therefore, in a system that utilizes two or more spatially separated microphones to pick up sound signals (e.g., speech), wind noise picked up by one of the microphones often will not be picked up (or at least not to the same extent) by the other microphone(s). Embodiments of methods and apparatuses that utilize this fact and others to effectively detect and suppress wind noise using multiple microphones that are spatially separated are described.
摘要:
A speech intelligibility enhancement (SIE) system and method is described that improves the intelligibility of a speech signal to be played back by an audio device when the audio device is located in an environment with loud acoustic background noise. In an embodiment, the audio device comprises a near-end telephony terminal and the speech signal comprises a speech signal received over a communication network from a far-end telephony terminal for playback at the near-end telephony terminal.
摘要:
Systems and methods are described for enhancing the audio quality of an FM receiver. In embodiments described herein, quadrature L−R demodulation is applied to a composite baseband signal output by an FM demodulator to obtain an L−R noise signal. A channel quality measure is calculated based on the L−R noise signal and is used to control whether a pop suppression technique is applied to an L+R signal obtained from the composite baseband signal to detect and remove noise pulses therefrom. The channel quality measure and the L−R noise signal are also leveraged to perform single-channel noise suppression in the frequency domain on an L−R signal obtained from the composite baseband signal and on the L+R signal. The channel quality measure is also used to control the application of a fast fading compensation process that replaces noisy segments of the L−R and L+R signal with replacement waveforms generated via waveform extrapolation.
摘要:
Systems and methods are described that utilize dynamic time scale modification (TSM) to achieve reduced bit rate audio coding. In accordance with embodiments, different levels of TSM compression are selectively applied to segments of an input speech signal prior to encoding thereof by an encoder. Encoded TSM-compressed segments are received at a decoder which decodes such segments and then applies an appropriate level of TSM decompression to each based on information received from the encoder. By selectively applying different levels of TSM compression to segments of an input speech signal prior to encoding, a coding bit rate associated with the encoder/decoder is reduced. Furthermore, by selecting a level of TSM compression for each segment of the input speech signal that takes into account certain local characteristics of that signal, such bit rate reduction is provided without introducing unacceptable levels of distortion into an output speech signal produced by the decoder.