摘要:
Multi-channel noise suppression systems and methods are described that omit the traditional delay-and-sum fixed beamformer in devices that include a primary speech microphone and at least one noise reference microphone with the desired speech being in the near-field of the device. The multi-channel noise suppression systems and methods use a blocking matrix (BM) to remove desired speech in the input speech signal received by the noise reference microphone to get a “cleaner” background noise component. Then, an adaptive noise canceler (ANC) is used to remove the background noise in the input speech signal received by the primary speech microphone based on the “cleaner” background noise component to achieve noise suppression. The filters implemented by the BM and ANC are derived using closed-form solutions that require calculation of time-varying statistics of complex frequency domain signals in the noise suppression system.
摘要:
Multi-channel noise suppression systems and methods are described that omit the traditional delay-and-sum fixed beamformer in devices that include a primary speech microphone and at least one noise reference microphone with the desired speech being in the near-field of the device. The multi-channel noise suppression systems and methods use a blocking matrix (BM) to remove desired speech in the input speech signal received by the noise reference microphone to get a “cleaner” background noise component. Then, an adaptive noise canceler (ANC) is used to remove the background noise in the input speech signal received by the primary speech microphone based on the “cleaner” background noise component to achieve noise suppression. The filters implemented by the BM and ANC are derived using closed-form solutions that require calculation of time-varying statistics of complex frequency domain signals in the noise suppression system.
摘要:
Described herein are multi-channel noise suppression systems and methods that are configured to detect and suppress wind and background noise using at least two spatially separated microphones: at least one primary speech microphone and at least one noise reference microphone. The multi-channel noise suppression systems and methods are configured, in at least one example, to first detect and suppress wind noise in the input speech signal picked up by the primary speech microphone and, potentially, the input speech signal picked up by the noise reference microphone. Following wind noise detection and suppression, the multi-channel noise suppression systems and methods are configured to perform further noise suppression in two stages: a first linear processing stage that includes a blocking matrix and an adaptive noise canceler, followed by a second non-linear processing stage.
摘要:
Unlike sound based pressure waves that go everywhere, air turbulence caused by wind is usually a fairly local event. Therefore, in a system that utilizes two or more spatially separated microphones to pick up sound signals (e.g., speech), wind noise picked up by one of the microphones often will not be picked up (or at least not to the same extent) by the other microphone(s). Embodiments of methods and apparatuses that utilize this tact and others to effectively detect and suppress wind noise using multiple microphones that are spatially separated are described.
摘要:
Unlike sound based pressure waves that go everywhere, air turbulence caused by wind is usually a fairly local event. Therefore, in a system that utilizes two or more spatially separated microphones to pick up sound signals (e.g., speech), wind noise picked up by one of the microphones often will not be picked up (or at least not to the same extent) by the other microphone(s). Embodiments of methods and apparatuses that utilize this tact and others to effectively detect and suppress wind noise using multiple microphones that are spatially separated are described.
摘要:
Unlike sound based pressure waves that go everywhere, air turbulence caused by wind is usually a fairly local event. Therefore, in a system that utilizes two or more spatially separated microphones to pick up sound signals (e.g., speech), wind noise picked up by one of the microphones often will not be picked up (or at least not to the same extent) by the other microphone(s). Embodiments of methods and apparatuses that utilize this fact and others to effectively detect and suppress wind noise using multiple microphones that are spatially separated are described.
摘要:
Methods and systems for decoding control channels using repetition redundancy may include generating enhanced soft bits by combining soft bits generated from the two GSM SACCH blocks. Combining may comprise averaging soft bits in one GSM SACCH block and corresponding soft bits from the other GSM SACCH block. Information in one GSM SACCH block may be repeated in the other GSM SACCH block. If repetition is detected, the enhanced soft bits may comprise enhanced soft bits for at least a portion of level 1 region and level 3 region of the GSM SACCH block. Otherwise, the generated enhanced soft bits may comprise enhanced soft bits for at least a portion of level 3 region of the GSM SACCH block.
摘要:
Various aspects of a method and system for adaptive multi rate and measurements adaptation may include a processor that enables computation of at least one signal level measurement for at least one received signal. The processor may enable cancelling of interfering signals received in addition to the received signal based on processing of a received bit sequence using a first burst process operation (BP) in a first decoding algorithm that utilizes SAIC operations. The processor may also enable cancelling of noise signals received in addition to the received signal based on processing the received bit sequence using a second BP operation that utilizes redundancy and imposes a physical constraint during decoding. The processor may also enable adjustment of the computed at least one signal level measurement.
摘要:
A telecommunication system including a fall duplex speakerphone, comprising a first microphone to generate a coupled signal including uplink information and non-linear distortion sensed by the first microphone in a speaker phone mode, a second microphone to generate a reference signal including downlink information and the non-linear distortion sensed by the second microphone in the speaker phone mode, and an acoustic echo canceller (AEC) to receive the coupled signal from the first microphone, to receive the reference signal from the second microphone, and to cancel out the non-linear distortion included in the coupled signal based on the non-linear distortion included in the reference signal.
摘要:
A method and system for decoding SACCH control channels in GSM-based systems with partial combining using weighted SNR may comprise combining least one weighted bit of a GSM slow associated control channel (SACCH) frame with at least one weighted bit of a subsequent GSM SACCH block based on burst signal to noise ratios (SNRs) of the GSM SACCH block and the subsequent GSM SACCH block. The burst SNR may be determined from a mid-amble of the GSM SACCH block and its subsequent GSM SACCH block. The burst SNRs of the GSM SACCH block may be translated to a corresponding plurality of scaling factors. At least a first weighting factor may be determined from the corresponding plurality of scaling factors. At least one weighted bit of the GSM SACCH block is determined utilizing the determined first weighting factor.