摘要:
Media-aware and TCP-compatible bandwidth sharing may be provided. In various embodiments, a network node may periodically update a virtual congestion level for a transmission stream in a network. The transmission stream may comprise at least one video stream and at least one data stream. The network node may then calculate, based at least in part on the virtual congestion level, a random packet marking probability or a random packet drop probability. In turn, the network node may either drop or mark transmission packets according to the calculated marking and dropping probability. The network node may further calculate an optimal video transmission rate for the at least one video stream and adjust a video transmission rate for the at least one video stream accordingly. Rate-distortions parameters for the at least one video stream may influence the optimal video transmission rate calculation for the at least one video stream.
摘要:
Embodiments are described herein such as a method for providing media-aware congestion control for the transmission of video streams, the method comprising: estimating congestion price information for one or more network nodes; responding to the congestion price information by calculating optimal rates for one or more end hosts; adapting the sending rates of the one or more end hosts according to the calculated optimal rates; and determining an amount of FEC to be inserted into the video streams based on the congestion price information.
摘要:
A particular device includes a transmitter. The transmitter is adapted to estimate a packet erasure rate for packets of a data window to be transmitted to a receiver. The transmitter is adapted to determine a number of proactive forward error correction (FEC) packets for the data window based on the estimated packet erasure rate. The transmitter is adapted to determine a packet size for the packets in the data window based on a window size of the data window and the determined number of proactive FEC packets. The transmitter is also adapted to transmit the data window to the receiver. The packets in the transmitted data window have a size corresponding to the determined packet size and include the determined number of proactive FEC packets.
摘要:
Provided are apparatuses and methods for transmitting or receiving data packets in a data block in a communication network with a transport protocol. In one example, a loss tolerant TCP protocol is used in which a maximum segment size (MSS) may be adapted to a minimum granularity of a congestion window. Also, proactive forward error correction (FEC) packets may be added to a window of the data block. The number of proactive FEC packets may be determined, for example, based on an estimate erasure rate. In addition, reactive FEC packets may be added to the data block. Also, a receiver may receive data packets in a data block and process a selective acknowledgment (SACK) responsive to the data packets received.
摘要:
In response to a detected loss of previously transmitted information by an apparatus communicating with a remote device (e.g., using TCP), the rate of transmission of information is increased by the apparatus in response to attributing the detected loss of previously transmitted information as not being caused by congestion. This attribution of the packet loss is typically determined based on roundtrip delays between sent information and received corresponding acknowledgments, which may be used directly or indirectly, such as by estimating network queuing delays based on the measured roundtrip delays.
摘要:
Provided are apparatuses and methods for transmitting or receiving data packets in a data block in a communication network with a transport protocol. In one example, a loss tolerant TCP protocol is used in which a maximum segment size (MSS) may be adapted to a minimum granularity of a congestion window. Also, proactive forward error correction (FEC) packets may be added to a window of the data block. The number of proactive FEC packets may be determined, for example, based on an estimate erasure rate. In addition, reactive FEC packets may be added to the data block. Also, a receiver may receive data packets in a data block and process a selective acknowledgment (SACK) responsive to the data packets received.
摘要:
Provided are apparatuses and methods for transmitting or receiving data packets in a data block in a communication network with a transport protocol. In one example, a loss tolerant TCP protocol is used in which a maximum segment size (MSS) may be adapted to a minimum granularity of a congestion window. Also, proactive forward error correction (FEC) packets may be added to a window of the data block. The number of proactive FEC packets may be determined, for example, based on an estimate erasure rate. In addition, reactive FEC packets may be added to the data block. Also, a receiver may receive data packets in a data block and process a selective acknowledgment (SACK) responsive to the data packets received.
摘要:
A method is provided in one example embodiment that includes receiving a request for data from a source device, such as an on-board unit of vehicle or a mobile device coupled to an on-board unit, over a vehicular network. Location data, such as GPS coordinates, speed, and heading associated with the source device may also be received. A travel path for the source device can be predicted based on the location data, and an access point to the network can be located within range of the travel path. Packets associated with the requested data may be sent to the access point and then forwarded to the source device when the source device is in range.
摘要:
Provided are apparatuses and methods for transmitting or receiving data packets in a data block in a communication network with a transport protocol. In one example, a loss tolerant TCP protocol is used in which a maximum segment size (MSS) may be adapted to a minimum granularity of a congestion window. Also, proactive forward error correction (FEC) packets may be added to a window of the data block. The number of proactive FEC packets may be determined, for example, based on an estimate erasure rate. In addition, reactive FEC packets may be added to the data block. Also, a receiver may receive data packets in a data block and process a selective acknowledgment (SACK) responsive to the data packets received.
摘要:
In response to a detected loss of previously transmitted information by an apparatus communicating with a remote device (e.g., using TCP), the rate of transmission of information is increased by the apparatus in response to attributing the detected loss of previously transmitted information as not being caused by congestion. This attribution of the packet loss is typically determined based on roundtrip delays between sent information and received corresponding acknowledgments, which may be used directly or indirectly, such as by estimating network queuing delays based on the measured roundtrip delays.