摘要:
A particular device includes a transmitter. The transmitter is adapted to estimate a packet erasure rate for packets of a data window to be transmitted to a receiver. The transmitter is adapted to determine a number of proactive forward error correction (FEC) packets for the data window based on the estimated packet erasure rate. The transmitter is adapted to determine a packet size for the packets in the data window based on a window size of the data window and the determined number of proactive FEC packets. The transmitter is also adapted to transmit the data window to the receiver. The packets in the transmitted data window have a size corresponding to the determined packet size and include the determined number of proactive FEC packets.
摘要:
A particular device includes a transmitter. The transmitter is adapted to estimate a packet erasure rate for packets of a data window to be transmitted to a receiver. The transmitter is adapted to determine a number of proactive forward error control (FEC) packets for the data window based on the estimated packet erasure rate. The transmitter is adapted to determine a packet size for the packets in the data window based on a window size of the data window and the determined number of proactive FEC packets. The transmitter is also adapted to transmit the data window to the receiver. The packets in the transmitted data window have a size corresponding to the determined packet size and include the determined number of proactive FEC packets.
摘要:
Provided are apparatuses and methods for transmitting or receiving data packets in a data block in a communication network with a transport protocol. In one example, a loss tolerant TCP protocol is used in which a maximum segment size (MSS) may be adapted to a minimum granularity of a congestion window. Also, proactive forward error correction (FEC) packets may be added to a window of the data block. The number of proactive FEC packets may be determined, for example, based on an estimate erasure rate. In addition, reactive FEC packets may be added to the data block. Also, a receiver may receive data packets in a data block and process a selective acknowledgment (SACK) responsive to the data packets received.
摘要:
Provided are apparatuses and methods for transmitting or receiving data packets in a data block in a communication network with a transport protocol. In one example, a loss tolerant TCP protocol is used in which a maximum segment size (MSS) may be adapted to a minimum granularity of a congestion window. Also, proactive forward error correction (FEC) packets may be added to a window of the data block. The number of proactive FEC packets may be determined, for example, based on an estimate erasure rate. In addition, reactive FEC packets may be added to the data block. Also, a receiver may receive data packets in a data block and process a selective acknowledgment (SACK) responsive to the data packets received.
摘要:
Provided are apparatuses and methods for transmitting or receiving data packets in a data block in a communication network with a transport protocol. In one example, a loss tolerant TCP protocol is used in which a maximum segment size (MSS) may be adapted to a minimum granularity of a congestion window. Also, proactive forward error correction (FEC) packets may be added to a window of the data block. The number of proactive FEC packets may be determined, for example, based on an estimate erasure rate. In addition, reactive FEC packets may be added to the data block. Also, a receiver may receive data packets in a data block and process a selective acknowledgment (SACK) responsive to the data packets received.
摘要:
Provided are apparatuses and methods for transmitting or receiving data packets in a data block in a communication network with a transport protocol. In one example, a loss tolerant TCP protocol is used in which a maximum segment size (MSS) may be adapted to a minimum granularity of a congestion window. Also, proactive forward error correction (FEC) packets may be added to a window of the data block. The number of proactive FEC packets may be determined, for example, based on an estimate erasure rate. In addition, reactive FEC packets may be added to the data block. Also, a receiver may receive data packets in a data block and process a selective acknowledgment (SACK) responsive to the data packets received.
摘要:
Provided are apparatuses and methods for transmitting or receiving data packets in a data block in a communication network with a transport protocol. In one example, a loss tolerant TCP protocol is used in which a maximum segment size (MSS) may be adapted to a minimum granularity of a congestion window. Also, proactive forward error correction (FEC) packets may be added to a window of the data block. The number of proactive FEC packets may be determined, for example, based on an estimate erasure rate. In addition, reactive FEC packets may be added to the data block. Also, a receiver may receive data packets in a data block and process a selective acknowledgment (SACK) responsive to the data packets received.
摘要:
A transport protocol that achieves improved performance in an environment where paths are lossy and a plurality of paths are employed to transfer data, essentially in parallel, from a source to a destination. The protocol is implemented with the aid of an aggregate flow manager (AFM) at the source that considers and controls the data flow through the plurality of paths. With some preselected regularity the AFM determines a number of packets to be included in a Forward Error Correction (FEC) block of packets, creates the block, and transmits the segments of the block over the plurality of paths. As necessary, the destination sends information to the source of what additional information needs to be sent. This additional information might be reactive error correcting (RFEC) packets, or a retransmission of the missed packets.
摘要:
A transport protocol that achieves improved performance in an environment where paths are lossy and a plurality of paths are employed to transfer data, essentially in parallel, from a source to a destination. The protocol is implemented with the aid of an aggregate flow manager (AFM) at the source that considers and controls the data flow through the plurality of paths. With some preselected regularity the AFM determines a number of packets to be included in a Forward Error Correction (FEC) block of packets, creates the block, and transmits the segments of the block over the plurality of paths. As necessary, the destination sends information to the source of what additional information needs to be sent. This additional information might be reactive error correcting (RFEC) packets, or a retransmission of the missed packets.
摘要:
Methods and arrangements for load-shifting time deferrable devices. An electrical load scheduling mechanism is provided, and this is placed in communication with an appliance. Electrical grid load conditions are assessed, and delivery of electrical power to the appliance is scheduled via the electrical load scheduling mechanism. The scheduling includes altering a predetermined delivery of electric power to the appliance based on the assessed electrical grid conditions.