摘要:
An optical system has an aperture through which virtual and real-world images are viewable along a viewing axis. The optical system may be incorporated into a head-mounted display (HMD). By illuminating a viewing location with an infrared light source, an eye pupil may be illuminated. Infrared light is reflected from the viewing location and is collected with a proximal beam splitter. An image former is configured to reflect at least a portion of the visible light pattern generated by the display panel to form the virtual image and transmit at least a portion of the collected infrared light. The transmitted infrared light may be imaged by a camera. The HMD may use images from the camera to provide, for example, context-sensitive virtual images to a wearer.
摘要:
An optical system has an aperture through which virtual and real-world images are viewable along a viewing axis. The optical system may be incorporated into a head-mounted display (HMD). By modulating the length of the optical path along an optical axis within the optical system, the virtual image may appear to be at different distances away from the HMD wearer. The wearable computer of the HMD may be used to control the length of the optical path. The length of the optical path may be modulated using, for example, a piezoelectric actuator or stepper motor. By determining the distance to an object with respect to the HMD using a range-finder or autofocus camera, the virtual images may be controlled to appear at various distances and locations in relation to the target object and/or HMD wearer.
摘要:
Disclosed are methods and devices for rendering interactions between virtual and physical objects on a substantially transparent display are disclosed. In one embodiment, the method includes displaying a user-interface on a substantially transparent display of a wearable computing device. The method further includes displaying a virtual object in the view region at a focal length along a first line of sight and detecting a physical object at a physical distance along a second line of sight. The method still further includes determining that a relationship between the focal length and the physical distance is such that the virtual object and the physical object appear substantially co-located in a user-view through the view region and, responsive to the determination, initiating a collision action between the virtual object and the physical object.
摘要:
An optical system has an aperture through which virtual and real-world images are viewable along a viewing axis. The optical system may be incorporated into a head-mounted display (HMD). By modulating the length of the optical path along an optical axis within the optical system, the virtual image may appear to be at different distances away from the HMD wearer. The wearable computer of the HMD may be used to control the length of the optical path. The length of the optical path may be modulated using, for example, a piezoelectric actuator or stepper motor. By determining the distance to an object with respect to the HMD using a range-finder or autofocus camera, the virtual images may be controlled to appear at various distances and locations in relation to the target object and/or HMD wearer.
摘要:
Exemplary methods and systems relate to detecting physical objects near a substantially transparent head-mounted display (HMD) system and activating a collision-avoidance action to alert a user of the detected objects. Detection techniques may include receiving data from distance and/or relative movement sensors and using this data as a basis for determining an appropriate collision-avoidance action. Exemplary collision-avoidance actions may include de-emphasizing virtual objects displayed on the HMD to provide a less cluttered view of the physical objects through the substantially transparent display and/or presenting new virtual objects.
摘要:
A wearable computing device includes a head-mounted display (HMD) that provides a field of view in which at least a portion of the environment of the wearable computing device is viewable. The HMD is operable to display images superimposed over the field of view. When the wearable computing device determines that a target device is within its environment, the wearable computing device obtains target device information related to the target device. The target device information may include information that defines a virtual control interface for controlling the target device and an identification of a defined area of the target device on which the virtual control image is to be provided. The wearable computing device controls the HMD to display the virtual control image as an image superimposed over the defined area of the target device in the field of view.
摘要:
Embodiments of a near-to-eye display include a light guide with a proximal end, a distal end, a front surface spaced apart from a back surface, an ambient input region on the front surface and an output region on the back surface. A display and a camera are positioned at or near the proximal end. A proximal optical element is positioned in the light guide and optically coupled to the display and the camera. A distal optical element is positioned in the light guide and optically coupled to the proximal optical element, the ambient input region and the output region. The proximal optical element can direct display light toward the distal optical element and ambient light to the camera, and the distal optical element can direct display light to the output region and ambient light to the output region and to the proximal optical element.
摘要:
Disclosed are methods and devices for rendering interactions between virtual and physical objects on a substantially transparent display are disclosed. In one embodiment, the method includes displaying a user-interface on a substantially transparent display of a wearable computing device. The method further includes displaying a virtual object in the view region at a focal length along a first line of sight and detecting a physical object at a physical distance along a second line of sight. The method still further includes determining that a relationship between the focal length and the physical distance is such that the virtual object and the physical object appear substantially co-located in a user-view through the view region and, responsive to the determination, initiating a collision action between the virtual object and the physical object.
摘要:
Example methods and systems for displaying one or more indications that indicate (i) the direction of a source of sound and (ii) the intensity level of the sound are disclosed. A method may involve receiving audio data corresponding to sound detected by a wearable computing system. Further, the method may involve analyzing the audio data to determine both (i) a direction from the wearable computing system of a source of the sound and (ii) an intensity level of the sound. Still further, the method may involve causing the wearable computing system to display one or more indications that indicate (i) the direction of the source of the sound and (ii) the intensity level of the sound.
摘要:
A method includes generating a light pattern using a display panel and forming a virtual image from the light pattern utilizing one or more optical components. The virtual image is viewable from a viewing location. The method also includes receiving external light from a real-world environment incident on an optical sensor. The real-world environment is viewable from the viewing location. Further, the method includes obtaining an image of the real-world environment from the received external light, identifying a background feature in the image of the real-world environment over which the virtual image is overlaid, and extracting one or more visual characteristics of the background feature. Additionally, the method includes comparing the one or more visual characteristics to an upper threshold value and a lower threshold value and controlling the generation of the light pattern based on the comparison.