摘要:
A DBR laser, such as a semiconductor DBR laser is disclosed having improved frequency modulation performance. The laser includes a split gain electrode and a tuning electrode. A modulating current encoding a data signal is injected into a first section of the gain electrode whereas a substantially DC bias voltage is imposed on a second section of the gain electrode positioned between the first gain electrode and the tuning electrode. The first and second gain electrodes are electrically isolated from each other and the tuning electrode by a large isolation resistance. In some embodiments, the isolation resistance is generated by forming the electrodes on a P+ layer and removing portions of the P+ layer between adjacent electrodes. Capacitors may couple to one or both of the second gain electrode and the tuning electrode.
摘要:
A DBR laser, such as a semiconductor DBR laser is disclosed having improved frequency modulation performance. The laser includes a split gain electrode and a tuning electrode. A modulating current encoding a data signal is injected into a first section of the gain electrode whereas a substantially DC bias voltage is imposed on a second section of the gain electrode positioned between the first gain electrode and the tuning electrode. The first and second gain electrodes are electrically isolated from each other and the tuning electrode by a large isolation resistance. In some embodiments, the isolation resistance is generated by forming the electrodes on a P+ layer and removing portions of the P+ layer between adjacent electrodes. Capacitors may couple to one or both of the second gain electrode and the tuning electrode.
摘要:
Use of depletion edge translation as an in cavity phase modulation mechanism in lasers. Aspects of the invention are especially relevant (without limitation) in transmitters for extended reach comprising an intra cavity phase and amplitude modulated laser for generation of a frequency modulated signal and a passive optical spectrum reshaper element, sometimes referred to as a chirp modulated laser. Such techniques may be carried out as disclose herein by adopting predetermined doping profiles and applying predetermined voltage to the laser cavity, and more preferably to a phase section in or adjoining the laser cavity.
摘要:
The frequency chirp modulation response of a directly modulated laser is described using a small signal model that depends on slow chirp amplitude s and slow chirp time constant τs. The small signal model can be used to derive an inverse response for designing slow chirp compensation means. Slow chirp compensation means include electrical compensation, optical compensation, or both. Slow chirp electrical compensation can be implemented with an LR filter or other RF circuit coupled to a direct modulation source (e.g., a laser driver) and the directly modulated laser. Slow chirp optical compensation can be implemented with an optical spectrum reshaper having a rounded top and relatively large slope (e.g., 1.5-3 dB/GHz). The inverse response can be designed to under-compensate, to produce a flat response, or to over-compensate.
摘要:
The frequency chirp modulation response of a directly modulated laser is described using a small signal model that depends on slow chirp amplitude s and slow chirp time constant τs. The small signal model can be used to derive an inverse response for designing slow chirp compensation means. Slow chirp compensation means include electrical compensation, optical compensation, or both. Slow chirp electrical compensation can be implemented with an LR filter or other RF circuit coupled to a direct modulation source (e.g., a laser driver) and the directly modulated laser. Slow chirp optical compensation can be implemented with an optical spectrum reshaper having a rounded top and relatively large slope (e.g., 1.5-3 dB/GHz). The inverse response can be designed to under-compensate, to produce a flat response, or to over-compensate.
摘要:
An wave division multiplexed (WDM) optical transmitter is disclosed including a directly modulated laser array and a planar lightwave chip (PLC) having a plurality of OSRs that receive outputs of the laser array and increase the extinction ratio of the received light. An optical multiplexer receives the outputs of the OSRs and couples them to a single output port. The multiplexer has transmission peaks through its ports each having a 0.5 dB bandwidth including the frequency of a laser in the array. The optical multiplexer may be embodied as cascaded Mach-Zehnder interferometers or ring resonators.
摘要:
An wave division multiplexed (WDM) optical transmitter is disclosed including a directly modulated laser array and a planar lightwave chip (PLC) having a plurality of OSRs that receive outputs of the laser array and increase the extinction ratio of the received light. An optical multiplexer receives the outputs of the OSRs and couples them to a single output port. The multiplexer has transmission peaks through its ports each having a 0.5 dB bandwidth including the frequency of a laser in the array. The optical multiplexer may be embodied as cascaded Mach-Zehnder interferometers or ring resonators.
摘要:
In some examples, a transmit assembly is described that may include a first optical transmitter, a second optical transmitter, and a polarizing beam combiner. The first optical transmitter may be configured to emit a first optical data signal centered at a first frequency. The second optical transmitter may be configured to emit a second optical data signal centered at a second frequency offset from the first frequency by a nominal offset n. The polarizing beam combiner may be configured to generate a dual carrier optical data signal by polarization interleaving the first optical data signal with the second optical data signal. An output of the polarizing beam combiner may be configured to be communicatively coupled via an optical transmission medium to a polarization-insensitive receive assembly.
摘要:
A fiber optic communication system comprising: an optical signal source adapted to receive a binary base signal having a bit period T, and generate a first signal, wherein the first signal is frequency modulated; and an optical spectrum reshaper (OSR) adapted to reshape the first signal into a second signal, wherein the second signal is amplitude modulated and frequency modulated; characterized in that: the optical signal source is a laser in which frequency modulation is generated by modulating the loss of the laser cavity. A method for transmitting a signal, comprising: receiving a binary base signal having a bit period T, and generating a first signal, wherein the first signal is frequency modulated; and reshaping the first signal into a second signal, wherein the second signal is amplitude modulated and frequency modulated; characterized in that: the first signal is frequency modulated by using a laser in which frequency modulation is generated by modulating the loss of the laser cavity. A fiber optic communication system comprising: an optical signal source adapted to receive a binary base signal having a bit period T, and generate a first signal, wherein the first signal is frequency modulated; and an optical spectrum reshaper (OSR) adapted to reshape the first signal into a second signal, wherein the second signal is amplitude modulated and frequency modulated; characterized in that: the optical signal source is a laser in which frequency modulation is generated by modulating the phase of the laser cavity.
摘要:
A fiber optic communication system comprising: an optical signal source adapted to receive a binary base signal having a bit period T, and generate a first signal, wherein the first signal is frequency modulated; and an optical spectrum reshaper (OSR) adapted to reshape the first signal into a second signal, wherein the second signal is amplitude modulated and frequency modulated; characterized in that: the frequency excursion of the first signal is adjusted such that the frequency excursion is substantially equal to the ratio of the bit period of the digital base signal to total dispersion of the transmission fiber, whereby to increase the tolerance of the second signal to dispersion in a transmission fiber.