摘要:
Embodiments herein relate to determining the location of a device using hybrid localization techniques. For example, a first technique such as trilateration may be used to determine an approximate location of the device. An error associated with the approximate location may also be implemented to increase the likelihood of locating the device upon applying a second localization technique, such as fingerprinting. Fingerprinting, when applied to the approximate location determined from trilateration, may determine the location of the device, or a more precise location than that determined from trilateration, such that reduced power consumption by the device may be achieved without sacrificing location accuracy.
摘要:
Embodiments herein relate to determining the location of a device using hybrid localization techniques. For example, a first technique such as trilateration may be used to determine an approximate location of the device. An error associated with the approximate location may also be implemented to increase the likelihood of locating the device upon applying a second localization technique, such as fingerprinting. Fingerprinting, when applied to the approximate location determined from trilateration, may determine the location of the device, or a more precise location than that determined from trilateration, such that reduced power consumption by the device may be achieved without sacrificing location accuracy.
摘要:
Disclosed herein are techniques to update a wireless fingerprint location database. According to such techniques, an update server updates a location database based on trajectories of a number of computing devices. The trajectories corresponding to sensor data collected by the computing devices, the sensor data including at least indication of RSSIs and inertial measurements. The RSSIs corresponding to wireless APs within an interior of a structure and represented in the location database.
摘要:
A location of a wireless device relative to a vehicle is determined using received data. Data may be received from the vehicle sensors. Data may also be received from the wireless device sensors of a wireless device. The presence of one or more persons may be determined using received data. A user-to-wireless device association may be detected based, at least in part, upon the presence of one or more persons in the vehicle and the location of the wireless device relative to the vehicle.
摘要:
After receiving an indication that a co-located central point is receiving co-location interference, a scheduling algorithm may be initiated. The scheduling may include allocating equal number of central points within each WiMAX frame. Each central point is allocated into a minimum number of frames subject to WiMAX capacity constraints.
摘要:
Wireless location identification systems, methods, and devices include a wireless device configured to transmit at least one sonic signal operating on at least one acoustic frequency and to receive at least one echo signal indicative of the at least one sonic signal being reflected by objects in a current location, an audio module configured to measure the received at least one echo signal and process the at least one echo signal to extract attributes of the echo signal and generate at least one echo profile characteristic; and logic configured to compare the at least one profile characteristic with previously-stored sonic characteristics that are correlated with pre-identified locations. The current location is then identified as a pre-identified location correlated to the previously-stored sonic characteristics that match the at least one profile characteristic.
摘要:
Various embodiments are generally directed to techniques to provide location sensing of a virtual map derived from sensors of a computing device moved about an interior of a structure. An apparatus for location sensing includes a processor component; and a refined trajectory generator, an inconsistent constraint identifier for identifier inconsistent constraints used to generate the refined trajectories, and an updated constraint set generator for updating the constraint set to remove the identified inconsistent constraints. Other embodiments are described and claimed.
摘要:
A location of a wireless device relative to a vehicle is determined using received data. Data may be received from the vehicle sensors. Data may also be received from the wireless device sensors of a wireless device. The presence of one or more persons may be determined using received data. A user-to-wireless device association may be detected based, at least in part, upon the presence of one or more persons in the vehicle and the location of the wireless device relative to the vehicle.
摘要:
Certain embodiments herein are directed to reducing variations in received signal strength indicator (RSSI) measurements that may be received by a wireless device over a network, such as a WiFi network including one or more access points. A signal sent from an access point may be received by a user device, where channel estimation results associated with the received signal may be analyzed to determine a more accurate location of the user device. The received signal may be converted to at least one of the time domain and the frequency domain, in which signal components associated with the received signal may be identified based on a determination that the signal components may be associated with multipath fading or other types of interference. Such identified signal components, whether in the frequency domain or the time domain) may be excluded from a determination of a signal strength measurement that may in turn be used to identify the location of the user device.
摘要:
A device, system, and method are presented for detecting motion. The system may include the device and a first transmitter and a second transmitter configured to transmit a first set of wireless signals and a second set of wireless signals, respectively. The device may have a receiver configured to receive the first and second set of wireless signals, and may further include a processing unit that determines a first value and a second value indicative of fading attenuations experienced by the first set of wireless signals and the second set of wireless signals, respectively. The processing unit may further determine whether the first and second values are each consistent with motion of an object in proximity to the device. The processing unit may cause the device to output an indication of presence of the object if both values are consistent with motion of the object in proximity to the device.