摘要:
The present invention provides a sealing ring and a preparation method thereof. The sealing ring, based on percent by weight, includes 80%-85% of aluminum, 10%-15% of titanium, 0.1%-1% of scrap iron, and 4%-4.9% of potassium fluoroaluminate. Moreover, the present invention provides a method for preparing sealing ring, which includes the following steps: Step A: melting the aluminum in a medium-frequency induction furnace, adding the potassium fluoroaluminate to the medium-frequency induction furnace after melting the aluminum, melting and stirring the mixture evenly; Step B: adding titanium scrap or sponge titanium, and scrap iron to the mixture successively, melting and mixing the mixture totally at 800° C. to 1200° C., standing the mixture after stirring evenly; Step C: removing scum on the surface; Step D: casting into a mold to obtain a final sealing ring.
摘要:
The present invention provides a piece of distillation equipment for producing sponge titanium, which includes a heating furnace and a reactor for containing a condensate, wherein a heating furnace cover is arranged above the heating furnace, a reactor cover is arranged above the reactor, the heating furnace cover is connected with the reactor cover by a pipe, a resistance wire is arranged on the pipe, each lifting device is arranged above the heating furnace cover and the reactor cover, a vacuum-pumping pipe is arranged above a heater cover, and a first metal sealing ring is arranged between the reactor cover and the reactor. The present invention has the beneficial effects that the distillation equipment can ensure normal production, and effectively ensure the quality of sponge titanium product. The problem of distillation tube blockage is solved by adopting a metal gasket.
摘要:
The present invention discloses a method for producing an aluminum-zirconium-titanium-carbon (Al—Zr—Ti—C) intermediate alloy; the Al—Zr—Ti—C intermediate alloy comprises 0.01% to 10% Zr, 0.01% to 10% Ti, 0.01% to 0.3% C, and Al in balance; the producing method comprising the steps of: preparing commercially pure aluminum, zirconium, titanium, and graphite material according to the weight percentages of the aluminum-zirconium-titanium-carbon intermediate alloy; the graphite powder is subjected to the following treatments: being added to the aqueous solution of KF, NaF, K2ZrF6, K2TiF6 or the combination thereof, soaked for 12 to 72 hours, filtrated or centrifuged, and dried at 80° C. to 200° C. for 12 to 24 hours; melting the commercially pure aluminum and keeping it at 700° C. to 900° C. to provide aluminum liquid, in which the prepared zirconium, the titanium and the treated graphite powder are added and melted to provide an alloy solution; and keeping the alloys solution at 700° C. to 900° C. under agitation and performing casting molding. The present method produces a high-quality Al—Zr—Ti—C intermediate alloy in low cost.
摘要:
The present invention relates to the field of magnesium and magnesium alloy processing, and discloses a use of aluminum-zirconium-carbon (Al—Zr—C) intermediate alloy in wrought processing of magnesium and magnesium alloys, wherein the aluminum-zirconium-carbon intermediate alloy has a chemical composition of: 0.01% to 10% Zr, 0.01% to 0.3% C, and Al in balance, based on weight percentage; the wrought processing is plastic molding; and the use is to refine the grains of magnesium or magnesium alloys. The present invention further discloses the method for using the aluminum-zirconium-carbon (Al—Zr—C) intermediate alloy in casting and rolling magnesium and magnesium alloys. The present invention provides an aluminum-zirconium-carbon (Al—Zr—C) intermediate alloy and the use thereof in the plastic wrought processing of magnesium or magnesium alloys as a grain refiner. The aluminum-zirconium-carbon intermediate alloy has the advantages of great ability in nucleation and good grain refining effect, and achieves the continuous and large-scale production of wrought magnesium and magnesium alloy materials.
摘要:
The present invention relates to the field of magnesium and magnesium alloy processing, and discloses the use of aluminum-zirconium-titanium-carbon (Al—Zr—Ti—C) intermediate alloy in wrought processing of magnesium and magnesium alloys, wherein the aluminum-zirconium-titanium-carbon intermediate alloy has a chemical composition of: 0.01% to 10% Zr, 0.01% to 10% Ti, 0.01% to 0.3% C, and Al in balance, based on weight percentage; the wrought processing is plastic molding; and the use is to refine the grains of magnesium or magnesium alloys. The present invention further discloses the method for using the aluminum-zirconium-titanium-carbon (Al—Zr—Ti—C) intermediate alloy in casting and rolling magnesium and magnesium alloys. The present invention provides an aluminum-zirconium-titanium-carbon (Al—Zr—Ti—C) intermediate alloy and the use thereof in the plastic wrought processing of magnesium or magnesium alloys as a grain refiner. The aluminum-zirconium-titanium-carbon intermediate alloy has the advantages of great ability in nucleation and good grain refining effect, and achieves the continuous and large-scale production of wrought magnesium and magnesium alloy materials.
摘要:
The present invention relates to the field of magnesium and magnesium alloy processing, and discloses a use of aluminum-zirconium-carbon (Al—Zr—C) intermediate alloy in wrought processing of magnesium and magnesium alloys, wherein the aluminum-zirconium-carbon intermediate alloy has a chemical composition of: 0.01% to 10% Zr, 0.01% to 0.3% C, and Al in balance, based on weight percentage; the wrought processing is plastic molding; and the use is to refine the grains of magnesium or magnesium alloys. The present invention further discloses the method for using the aluminum-zirconium-carbon (Al—Zr—C) intermediate alloy in casting and rolling magnesium and magnesium alloys. The present invention provides an aluminum-zirconium-carbon (Al—Zr—C) intermediate alloy and the use thereof in the plastic wrought processing of magnesium or magnesium alloys as a grain refiner. The aluminum-zirconium-carbon intermediate alloy has the advantages of great ability in nucleation and good grain refining effect, and achieves the continuous and large-scale production of wrought magnesium and magnesium alloy materials.
摘要:
The present invention discloses a method for producing an aluminum-zirconium-carbon (Al—Zr—C) intermediate alloy; the Al—Zr—C intermediate alloy has a chemical composition of 0.01% to 10% Zr, 0.01% to 0.3% C, and Al in balance; the producing method comprising the steps of: producing commercially pure aluminum, zirconium metal, and graphite material according to the weight percentages of the aluminum-zirconium-carbon intermediate alloy; the graphite is graphite powder having an average particle size of 0.074 mm to 1 mm; and the graphite powder is subjected to the following treatments: being added to the aqueous solution of KF, NaF, K2ZrF6, K2TiF6 or the combination thereof, soaked for 12 to 72 hours, filtrated or centrifuged, and dried at 80° C. to 200° C. for 12 to 24 hours; melting the commercially pure aluminum and keeping it at 700° C. to 900° C. to provide aluminum liquid, in which the prepared zirconium and the treated graphite powder are added and melted to provide an alloy solution; and keeping the alloys solution at 700° C. to 900° C. under mechanical or electromagnetic agitation and performing casting molding. The present method produces a high-quality Al—Zr—C intermediate alloy in low cost.
摘要:
A method for continuous and efficient casting roll of magnesium alloy plates including providing plural induction furnaces, resistance furnace, casting roll and rollers; adding metal elements into the induction furnaces, the metal elements comprising Mg ingots or Mg alloy, the metal elements being smelted in the induction furnaces and then flow into the resistance furnace; controlling temperature of the Mg melt in the resistance furnace, wherein there are at least two temperature controlling areas communicated with each other, and a difference of temperatures is constant; transferring the Mg melt into biting area through a transferring pipe and modeling the mg melt into Mg plate, the temperature of the Mg melt into the biting area being 690±10° C.; Rolling the Mg plate in the rollers and each band of the rollers having a working temperature 250˜350° C., and the difference of temperature is ±10° C.
摘要:
The present invention pertains to the field of metal alloy, and relates a grain refiner for magnesium and magnesium alloys, which is an aluminum-zirconium-carbon (Al—Zr—C) intermediate alloy, having a chemical composition of: 0.01%˜10% Zr, 0.01%˜0.3% C, and Al in balance, based on weight percentage. Also, the present invention discloses the method for preparing the grain refiner. The grain refiner according to the present invention is an intermediate alloy having great nucleation ability and in turn excellent grain refining performance for magnesium and magnesium alloys, and is industrially applicable in the casting and rolling of magnesium and magnesium alloy profiles, enabling the wide use of magnesium in industries.
摘要:
The present invention discloses a method for producing an aluminum-zirconium-titanium-carbon (Al—Zr—Ti—C) intermediate alloy; the Al—Zr—Ti—C intermediate alloy comprises 0.01% to 10% Zr, 0.01% to 10% Ti, 0.01% to 0.3% C, and Al in balance; the producing method comprising the steps of: preparing commercially pure aluminum, zirconium, titanium, and graphite material according to the weight percentages of the aluminum-zirconium-titanium-carbon intermediate alloy; the graphite powder is subjected to the following treatments: being added to the aqueous solution of KF, NaF, K2ZrF6, K2TiF6 or the combination thereof, soaked for 12 to 72 hours, filtrated or centrifuged, and dried at 80° C. to 200° C. for 12 to 24 hours; melting the commercially pure aluminum and keeping it at 700° C. to 900° C. to provide aluminum liquid, in which the prepared zirconium, the titanium and the treated graphite powder are added and melted to provide an alloy solution; and keeping the alloys solution at 700° C. to 900° C. under agitation and performing casting molding. The present method produces a high-quality Al—Zr—Ti—C intermediate alloy in low cost.