摘要:
Approaches for adjusting the pacing energy delivered by a pacemaker are provided. Adjusting the pacing energy involves performing a plurality of capture threshold tests, each capture threshold test measuring a capture threshold of the heart. One or more measured captured thresholds are selected, including at least one capture threshold that is higher relative to other measured capture thresholds acquired by the plurality of capture threshold tests. The pacing energy is adjusted based on the one or more selected capture thresholds.
摘要:
Cardiac devices and methods involve the detection of cardiac signals features in adjacent classification intervals. Portions of the cardiac signal features detected in adjacent classification intervals are associated and are used to classify the cardiac response to a pacing pulse. Associating the portions of the cardiac signal features may be based on expected signal morphology.
摘要:
Methods and systems for detecting noise in cardiac pacing response classification processes involve determining that a cardiac response classification is possibly erroneous if unexpected signal content is detected. The unexpected signal content may comprise signal peaks that have polarity opposite to the polarity of peaks used to determine the cardiac response to pacing. Fusion/noise management processes include pacing at a relatively high energy level until capture is detected after a fusion, indeterminate or possibly erroneous pacing response classification is made. The relatively high energy pacing pulses may be delivered until capture is detected or until a predetermined number of paces are delivered.
摘要:
Multi-chamber pacing may result in capture of one chamber, capture of multiple chambers, fusion, or non-capture. Approaches for detecting various capture conditions during multi-chamber pacing are described. Pacing pulses are delivered to left and right heart chambers during a cardiac cycle. A cardiac electrogram signal is sensed following the delivery of the pacing pulses. Left chamber capture only, right chamber capture only, and bi-chamber capture may be distinguished based on characteristics of the cardiac electrogram signal. Multi-chamber capture detection may be implemented using detection windows having dimensions of time and amplitude. The detection windows are associated with expected features, such as expected signal peaks, under a particular capture condition. The cardiac electrogram signal features are compared to detection windows to determine the capture condition.
摘要:
Cardiac devices and methods discriminate non-captured intrinsic beats during evoked response detection and classification by comparing the features of a post-pace cardiac signal with expected features associated with a non-captured response with intrinsic activation. Detection of a non-captured response with intrinsic activation may be based on the peak amplitude and timing of the cardiac signal. The methods may be used to discriminate between a fusion or capture beat and a non-captured intrinsic beat. Discriminating between possible cardiac responses to the pacing pulse may be useful, for example, during automatic capture verification and/or a capture threshold test.
摘要:
The waveform morphology of a propagated pacing response signal may be adjusted to achieve a waveform morphology that enhances cardiac pacing response determination. One or more pacing intervals may be adjusted to achieve at least one cardiac pacing response waveform morphology that enhances determination of the cardiac pacing response. The heart is paced using the one or more adjusted pacing intervals and the cardiac response to the pacing is determined. The one or more adjusted pacing intervals may include an atrioventricular pacing delay, an interatrial pacing delay, an interventricular pacing delay, or other inter-chamber or inter-site pacing delays. Adjusting the one or more pacing intervals may be used to increase a difference between a first waveform morphology associated with multi-chamber capture and a second waveform morphology associated with single chamber capture.
摘要:
Cardiac devices and methods provide adaptation of detection windows used to determine a cardiac response to pacing. Adapting a detection window involves sensing a cardiac signal indicative of a particular type of cardiac pacing response, and detecting a feature of the sensed cardiac signal. The cardiac response detection window associated with the type of cardiac pacing response is preferentially adjusted based on the location of the detected cardiac feature. Preferential adjustment of the detection window may involve determining a direction of change between the detection window and the detected feature. The detection window may be adapted more aggressively in a more preferred direction and less aggressively in a less preferred direction.
摘要:
Cardiac devices and methods provide adaptation of detection windows used to determine a cardiac response to pacing. Adapting a detection window involves sensing a cardiac signal indicative of a particular type of cardiac pacing response, and detecting a feature of the sensed cardiac signal. The cardiac response detection window associated with the type of cardiac pacing response is preferentially adjusted based on the location of the detected cardiac feature. Preferential adjustment of the detection window may involve determining a direction of change between the detection window and the detected feature. The detection window may be adapted more aggressively in a more preferred direction and less aggressively in a less preferred direction.
摘要:
A method and system are described for determining an optimum atrioventricular delay (AVD) interval and/or ventriculo-ventricular delay (VVD) intervals for delivering ventricular resynchronization pacing in an atrial tracking or atrial sequential pacing mode. Evoked response electrograms recorded at different AVD and VVD intervals are used to determine the extent of paced and intrinsic activation.
摘要:
Methods and devices for classifying a cardiac response to pacing involve establishing a retriggerable cardiac response classification window. A first cardiac response classification window is established subsequent to delivery of a pacing pulse. A cardiac signal following the pacing stimulation is sensed in the first classification window. A second cardiac response classification may be triggered if a trigger characteristic is detected in the first classification window. The cardiac signal is sensed in the second classification window if the second classification window is established. The cardiac response to the pacing stimulation is determined based on characteristics of the cardiac signal. The cardiac response may be determined to be one of a captured response, a non-captured response; a non-captured response added to an intrinsic beat, and a fusion/pseudofusion beat, for example.