摘要:
A flaw sensor for a metal pipe has an exciting coil for generating remote field eddy currents in the pipe. First and second groups of receiving coils are spaced from the exciting coil by respective distances along the axis of the pipe in a region of the generated remote field eddy currents. The first and second groups have respective pluralities of receiving coils with axes perpendicular to the pipe axis and disposed circumferentially about the pipe axis at predetermined angular increments wherein the receiving coils of the second group are staggered relative to the receiving coils of the first group. A third receiving coil is disposed coaxially with the pipe at still another distance from the exciting coil along the pipe axis but also in the region of the generated remote field eddy currents. When a defect in the thickness of the metal pipe is encountered, a magnetic field caused by the defect to be perpendicular to the axis of the pipe is detected by one or more of the receiving coils of the first and/or second group. The third receiving coil detects phase changes to the magnetic field generated parallel to the pipe by the eddy currents. A ratio of phase changes produced by a standard thickness of a reference pipe and a sample subject pipe is used as a correction factor for detected phase changes in a defective pipe to accurately calculate the defective wall thickness.
摘要:
The present invention relates to a flaw detector for metal material for maintaining and managing pipelines using a remote field eddy current sensor. An AC signal having a constant level and shifted by predetermined phase angle is added to signals received in receiving coils of the remote field eddy current sensor to obtain accurate phase detection in a normal, nonflawed portion of the pipeline to be tested (e.g. uniform thickness, no holes, etc.). By preventing generation of abnormal flaw data, precise diagnosis of the pipeline can be performed. An AGC circuit may be used to maintain at a constant level of received signal. Two sets of spaced apart receiving coils are spaced from an exciting coil a distance greater than a predetermined distance (about two times the pipeline diameter). The set of receiving coils closest to the exciting coil has a greater number of coil turns than the other set. This coil configuration generates sensed coil differential signals having sufficient signal amplitude to permit stabilized and accurate phase detection and comparison for nonflawed and gradually flawed regions in the pipe.
摘要:
The present invention relates to a flaw detector for metal material for maintaining and managing pipelines using a remote field eddy current sensor. An AC signal having constant level and shifted by predetermined phase angle is added to signals received in receiving coils of the remote field eddy current sensor to obtain accurate phase detection in a normal, nonflawed portion of the pipeline to be tested (e.g. uniform thickness, no holes, etc.). By preventing generation of abnormal flaw data, precise diagnosis of the pipeline can be performed. An AGC circuit may be used to maintain at a constant level of received signal. Two sets of spaced apart receiving coils are spaced from an exciting coil a distance greater than a predetermined distance (about two times the pipeline diameter). The set of receiving coils closest to the exciting coil has a greater number of coil turns than the other set. This coil configuration generates sensed coil differential signals having sufficient signal amplitude to permit stabilized and accurate phase detection and comparison for nonflawed and gradually flawed regions in the pipe.
摘要:
The present invention relates to a flaw detector for metal material for maintaining and managing pipelines using a remote field eddy current sensor. An AC signal having a constant level and shifted by predetermined phase angle is added to signals received in receiving coils of the remote field eddy current sensor to obtain accurate phase detection in a normal, nonflawed portion of the pipeline to be tested (e.g. uniform thickness, no holes, etc.). By preventing generation of abnormal flaw data, precise diagnosis of the pipeline can be performed. An AGC circuit may be used to maintain at a constant level of received signal. Two sets of spaced apart receiving coils are spaced from an exciting coil a distance greater than a predetermined distance (about two time the pipeline diameter). The set of receiving coils closest to the exciting coil has a greater number of coil turns than the other set. This coil configuration generates sensed coil differential signals having sufficient signal amplitude to permit stabilized and accurate phase detection and comparison for nonflawed and gradually flawed regions in the pipe.
摘要:
A method of inspecting an abnormality occurring inside a pipe to be inspected, and an apparatus for practicing the method, which includes the steps of transmitting an electric radio or radio frequency (RF) wave having a predetermined frequency from an antenna of a transmitter located at a predetermined position inside the pipe, receiving the transmitted RF wave by an antenna of a receiver located at a predetermined position inside the pipe, and discriminating a characteristic of the received RF wave. The characteristic of the received RF wave can be the intensity of the RF wave, and an attenuation amount is detected in a first example. Alternatively, the characteristic of the received RF wave may be the time required to reflect the transmitted RF wave and receive it with the receiver, and the time interval between transmission of the RF wave and reception of the reflected RF wave is measured in this alternative.
摘要:
A method of measuring the inner diameter of a pipe includes the steps of continuously transmitting RF waves of a predetermined frequency band from an antenna of a transmitter located inside of the pipe to be inspected, receiving the RF waves with an antenna of a receiver located inside the pipe, the antenna of the receiver being spaced apart from the antenna of the transmitter by a predetermined distance, detecting a frequency at a change point where an intensity of the received RF wave changes greatly, and substituting the frequency at the change point into a formula: d=c/1.706f (wherein d is the inner diameter of the pipe, c is the velocity of light, and f is the frequency at the change point) which shows the relation between the inner diameter of the pipe and the frequency to obtain a minimum inner diameter of the pipe.
摘要翻译:一种测量管道内径的方法包括以下步骤:从位于被检测管内部的发射器的天线连续地发送预定频带的RF波,接收位于内部的接收器的天线的RF波 所述接收器的天线与所述发射机的天线间隔预定距离,检测在所接收的RF波的强度变化很大的变化点处的频率,并将所述变化点处的频率代入到 公式:d = c / 1.706f(其中d是管的内径,c是光的速度,f是变化点的频率),其示出了管的内径与频率之间的关系 以获得管的最小内径。