摘要:
An oscillator unit is configured such that a frequency adjustment unit of a synthesizer used by a controller is smaller than a frequency variation tracking capability of a demodulator connected to an output side of a frequency converter. This structure successfully combines the temperature compensation control of an oscillator unit and the receiving process of a high-frequency receiving device. Accordingly, an oscillator unit with large temperature coefficient is applicable to high-frequency receiving devices.
摘要:
An oscillator unit is configured such that a frequency adjustment unit of a synthesizer used by a controller is smaller than a frequency variation tracking capability of a demodulator connected to an output side of a frequency converter. This structure successfully combines the temperature compensation control of an oscillator unit and the receiving process of a high-frequency receiving device. Accordingly, an oscillator unit with large temperature coefficient is applicable to high-frequency receiving devices.
摘要:
An oscillator unit is configured such that a frequency adjustment unit of a synthesizer used by a controller is smaller than a frequency variation tracking capability of a demodulator connected to an output side of a frequency converter. This structure successfully combines the temperature compensation control of an oscillator unit and the receiving process of a high-frequency receiving device. Accordingly, an oscillator unit with large temperature coefficient is applicable to high-frequency receiving devices.
摘要:
An oscillator unit is configured such that a frequency adjustment unit of a synthesizer used by a controller is smaller than a frequency variation tracking capability of a demodulator connected to an output side of a frequency converter. This structure successfully combines the temperature compensation control of an oscillator unit and the receiving process of a high-frequency receiving device. Accordingly, an oscillator unit with large temperature coefficient is applicable to high-frequency receiving devices.
摘要:
A synthesizer of the present invention includes a synthesizer section that generates an oscillation signal based on a reference oscillation signal output from a MEMS resonator and inputs the oscillation signal to a frequency converter; and a control section that adjusts a frequency of the oscillation signal output from the synthesizer section. In frequency adjustment by the control section, when a frequency adjustment unit of the synthesizer section is defined as predetermined value F in which quality of an output signal from the frequency converter is a quality limit threshold value, frequency adjustment unit Δfcont of the synthesizer section is within predetermined value F.
摘要:
A synthesizer including an oscillator for outputting an oscillation signal based on an output signal from a comparator, a frequency divider for dividing a frequency of an output signal from the oscillator based on control from a controller, and a temperature sensor for detecting an error between a preset frequency and a frequency based on a reference oscillation signal. The comparator compares an output signal from the frequency divider with an output signal from a MEMS oscillator and outputs a signal indicating the comparison result to the oscillator. The controller changes the frequency division ratio of the frequency divider based on an output signal from the temperature sensor and changes the frequency division ratio in a state in which the frequency division ratio is kept at the past value. Thus, phase noise deterioration in the synthesizer can be suppressed.
摘要:
A synthesizer includes: a synthesizer unit that outputs an oscillation signal based on a reference oscillation signal; a temperature detecting unit that detects a temperature; a time variation detecting unit that detects a time variation in frequency of the reference oscillation signal based on a result of temperature detection by the temperature detecting unit; and a control unit that adjusts a frequency of the oscillation signal outputted from the synthesizer unit based on a result of detection by the time variation detecting unit. With such a configuration, frequency compensation control is performed on a transducer having a large temperature coefficient.
摘要:
A synthesizer includes: a synthesizer unit that outputs an oscillation signal based on a reference oscillation signal; a temperature detecting unit that detects a temperature; a time variation detecting unit that detects a time variation in frequency of the reference oscillation signal based on a result of temperature detection by the temperature detecting unit; and a control unit that adjusts a frequency of the oscillation signal outputted from the synthesizer unit based on a result of detection by the time variation detecting unit. With such a configuration, frequency compensation control is performed on a transducer having a large temperature coefficient.
摘要:
A synthesizer of the present invention includes a synthesizer section that generates an oscillation signal based on a reference oscillation signal output from a MEMS resonator and inputs the oscillation signal to a frequency converter; and a control section that adjusts a frequency of the oscillation signal output from the synthesizer section. In frequency adjustment by the control section, when a frequency adjustment unit of the synthesizer section is defined as predetermined value F in which quality of an output signal from the frequency converter is a quality limit threshold value, frequency adjustment unit Δfcont of the synthesizer section is within predetermined value F.
摘要:
A synthesizer including an oscillator for outputting an oscillation signal based on an output signal from a comparator, a frequency divider for dividing a frequency of an output signal from the oscillator based on control from a controller, and a temperature sensor for detecting an error between a preset frequency and a frequency based on a reference oscillation signal. The comparator compares an output signal from the frequency divider with an output signal from a MEMS oscillator and outputs a signal indicating the comparison result to the oscillator. The controller changes the frequency division ratio of the frequency divider based on an output signal from the temperature sensor and changes the frequency division ratio in a state in which the frequency division ratio is kept at the past value. Thus, phase noise deterioration in the synthesizer can be suppressed.