Abstract:
A system includes a local oscillator (LO) signal generation circuit, a receiver (RX) circuit, and a calibration circuit. The LO signal generation circuit generates an LO signal according to a reference clock, and includes an active oscillator that generates the reference clock. The active oscillator includes at least one active component. The RX circuit generates a processed RX signal by processing an RX input signal according to the LO signal. The calibration circuit checks a signal characteristic of the processed RX signal by detecting if a calibration tone exists within a receiver bandwidth, set a frequency calibration control output in response to the calibration tone being not found in the receiver bandwidth, and output the frequency calibration control output to the LO signal generation circuit. The LO signal generation circuit adjusts an LO frequency of the LO signal in response to the frequency calibration control output.
Abstract:
A method includes receiving, by a recording device, an indication of an initializing time and receiving, by the recording device, an indication of a timing pace. The method also includes maintaining, by the recording device, an updated current time based on the initializing time and the timing pace and sensing, via a sensor of the recording device, a condition. The method further includes storing, in memory of the recording device, an indication of the condition and an associated indication of the updated current time. The indication of the updated current time corresponds to when the condition was sensed by the sensor.
Abstract:
A frequency tuning apparatus includes: a frequency tuner configured to tune an oscillation frequency of an oscillator based on target information extracted from a mapping table in correspondence to a target frequency, and oscillation information collected from the oscillator; and a frequency compensator configured to compensate for a compensation error between the tuned oscillation frequency and the target frequency based on an offset table.
Abstract:
A technique to provide hybrid compensation to correct for drifts in a reference frequency output from a digitally-controlled crystal oscillator (DCXO). A first compensation is provided to the DCXO to adjust for overlap or discontinuity of the reference frequency caused by switching capacitors in the capacitor array that controls drift of the reference frequency output. The second compensation is obtained at a phase-locked loop (PLL) that receives the reference frequency signal from the DCXO. The second compensation adjusts the PLL to adjust for variations of the reference frequency that remain after performing compensation in the DCXO.
Abstract:
The disclosure aims to implement an automatic frequency offset compensation of the frequency between emitter and receiver equipments, in radio frequency modules, with a frequency offset that can be larger than that the receiver can allow, without time loss and extra consumption. To solve this problem, the disclosure provides an automatic frequency offset compensation device comprising a reception front end, at least a filter, an I/Q demodulator for obtaining the I (In Phase) and Q (Quadrature) parameter, an automatic frequency control AFC unit for comparison of a received frequency with the real frequency of the equipment, and a microcontroller and a frequency synthesizer. In this device, the frequency offset is calculated by the AFC unit from the information given by the I/Q demodulator. A coarse detection with wide filter can be used for the reception of the first part of the data called preamble signal, and a fine detection with narrow filter can be used for reception of the second part of the data called useful data frame. A frequency synthesis is made using the frequency offset.
Abstract:
A broadband integrated receiver for receiving input signals and outputting composite video and audio signals is disclosed. The receiver employs an up-conversion mixer and a down-conversion mixer in series to produce an intermediate signal. An intermediate filter between the mixers performs coarse channel selection. The down-conversion mixer may be an image rejection mixer to provide additional filtering.
Abstract:
The disclosure aims to implement an automatic frequency offset compensation of the frequency between emitter and receiver equipments, in radio frequency modules, with a frequency offset that can be larger than that the receiver can allow, without time loss and extra consumption. To solve this problem, the disclosure provides an automatic frequency offset compensation device comprising a reception front end, at least a filter, an I/Q demodulator for obtaining the I (In Phase) and Q (Quadrature) parameter, an automatic frequency control AFC unit for comparison of a received frequency with the real frequency of the equipment, and a microcontroller and a frequency synthesizer. In this device, the frequency offset is calculated by the AFC unit from the information given by the I/Q demodulator. A coarse detection with wide filter can be used for the reception of the first part of the data called preamble signal, and a fine detection with narrow filter can be used for reception of the second part of the data called useful data frame. A frequency synthesis is made using the frequency offset
Abstract:
Systems and methods for operating with oscillators configured to produce an oscillating signal having an arbitrary frequency are described. The frequency of the oscillating signal may be shifted to remove its arbitrary nature by application of multiple tuning signals or values to the oscillator. Alternatively, the arbitrary frequency may be accommodated by adjusting operation one or more components of a circuit receiving the oscillating signal.
Abstract:
A synthesizer includes: a synthesizer unit that outputs an oscillation signal based on a reference oscillation signal; a temperature detecting unit that detects a temperature; a time variation detecting unit that detects a time variation in frequency of the reference oscillation signal based on a result of temperature detection by the temperature detecting unit; and a control unit that adjusts a frequency of the oscillation signal outputted from the synthesizer unit based on a result of detection by the time variation detecting unit. With such a configuration, frequency compensation control is performed on a transducer having a large temperature coefficient.
Abstract:
A broadband integrated receiver for receiving input signals and outputting composite video and audio signals is disclosed. The receiver employs an up-conversion mixer and a down-conversion mixer in series to produce an intermediate signal. An intermediate filter between the mixers performs coarse channel selection. The down-conversion mixer may be an image rejection mixer to provide additional filtering.