摘要:
A method for manufacturing a semiconductor device. The method comprises forming a metal layer on a silicon-containing layer located on a semiconductor substrate. The method also comprises reacting a portion of the metal layer with the silicon-containing layer to form a metal silicide layer. The method further comprises removing an unreacted portion of the metal layer on the metal silicide layer by a removal process. The removal process includes delivering a flow of an acidic solution to a surface of the unreacted portion of the metal layer, wherein the acidic solution delivered to the surface is substantially gas-free.
摘要:
A method for manufacturing a semiconductor device. The method comprises forming a metal layer on a silicon-containing layer located on a semiconductor substrate. The method also comprises reacting a portion of the metal layer with the silicon-containing layer to form a metal silicide layer. The method further comprises removing an unreacted portion of the metal layer on the metal silicide layer by a removal process. The removal process includes delivering a flow of an acidic solution to a surface of the unreacted portion of the metal layer, wherein the acidic solution delivered to the surface is substantially gas-free.
摘要:
A method of manufacturing an IC that comprises fabricating a semiconductor device. Fabricating the device includes depositing a photoresist layer on a substrate surface and implanting one or more dopant species through openings in the photoresist layer into the substrate, and, into the photoresist layer, thereby forming an implanted photoresist layer. Fabricating the device also includes removing the implanted photoresist layer. Removing the implanted photoresist layer includes exposing the implanted photoresist layer to a mixture that includes sulfuric acid, hydrogen peroxide and ozone. The mixture is at a temperature of at least about 130°.
摘要:
A method of manufacturing an IC device includes providing a workpiece having least one dielectric layer disposed on a surface of the workpiece. The method also includes processing the dielectric layer to form a plurality of apertures in the dielectric layer, where the processing includes at least one micromask-prone process. The method further includes subsequent to the processing step, cryogenically treating the workpiece. In the method, the treating step removes particles deposited on or in the plurality of apertures during the processing step and maintains the plurality of apertures, where the particles are generated from micromask features resulting from the micromask-prone process.
摘要:
A method of removing photoresist from a surface during the manufacture of an integrated circuit. Organometallic polymers and monomers are formed during the etch of a hard mask material defining the locations of a metal-bearing film, such as tantalum nitride, when photoresist is used to mask the hard mask etch. These organometallic polymers and monomers as formed are not fully cross-linked. A liquid phase solution of sulfuric acid and hydrogen peroxide used to remove the photoresist also removes these not-fully-cross-linked organometallic polymers and monomers, thus preventing the formation of stubborn contaminants during subsequent high temperature processing.