摘要:
An apparatus includes a substrate and a magnetic layer coupled to the substrate. The magnetic layer includes an alloy that has magnetic hardness that is a function of the degree of chemical ordering of the alloy. The degree of chemical ordering of the alloy in a first portion of the magnetic layer is greater than the degree of chemical ordering of the alloy in a second portion of the magnetic layer, and the first portion of the magnetic layer is closer to the substrate than the second portion of the magnetic layer.
摘要:
Determining a Curie temperature (Tc) distribution of a sample comprising magnetic material involves subjecting the sample to an electromagnetic field, heating the sample over a range of temperatures, generating a signal representative of a parameter of the sample that changes as a function of changing sample temperature while the sample is subjected to the electromagnetic field, and determining the Tc distribution of the sample using the generated signal and a multiplicity of predetermined parameters of the sample.
摘要:
An apparatus includes a non-metallic interlayer between a magnetic data storage layer and a heat sink layer, wherein interface thermal resistance between the interlayer and the heat sink layer is capable of reducing heat flow between the heat sink layer and the magnetic data storage layer. The apparatus may be configured as a thin film structure arranged for data storage. The apparatus may also include thermal resistor layer positioned between the interlayer and the heat sink layer.
摘要:
Magnetic layers are described that include the use of magnetic grains and non-magnetic grain boundaries with hybrid additives. Hybrid additives include the use of at least two different additives in the composition of the grain boundaries of a magnetic layer in magnetic recording media. The use of hybrid additives in the grain boundaries results in improved recording media. Methods for forming magnetic layers and magnetic recording media with the hybrid additive grain boundaries are also described.
摘要:
A magnetic stack includes multiple granular layers, at least one of the multiple granular layers is a magnetic layer that includes exchange coupled magnetic grains separated by a segregant having Ms greater than 100 emu/cc. Each of the multiple granular layers have anisotropic thermal conductivity.
摘要:
A perpendicular magnetic media includes a substrate, a patterned template, a seed layer and a magnetic layer. The patterned template is formed on the substrate and includes a plurality of growth sites that are evenly spaced apart from each other. The seed layer is formed over the patterned template and the exposed areas of the substrate. Magnetic material is sputter deposited onto the seed layer with one grain of the magnetic material nucleated over each of the growth sites. The grain size distribution of the magnetic material is reduced by controlling the locations of the growth sites which optimizes the performance of the perpendicular magnetic media.
摘要:
Magnetic layers are described that include the use of magnetic grains and non-magnetic grain boundaries with hybrid additives. Hybrid additives include the use of at least two different additives in the composition of the grain boundaries of a magnetic layer in magnetic recording media. The use of hybrid additives in the grain boundaries results in improved recording media. Methods for forming magnetic layers and magnetic recording media with the hybrid additive grain boundaries are also described.
摘要:
Various magnetic stack embodiments may be constructed with a soft magnetic underlayer (SUL) having a first thickness disposed between a substrate and a magnetic recording layer. A heatsink may have a second thickness and be disposed between the SUL and the magnetic recording layer. The first and second thicknesses may each be tuned to provide predetermined thermal conductivity and magnetic permeability throughout the data media.
摘要:
Various magnetic slack embodiments may be constructed with a soft magnetic underlayer (SUL) having a first thickness disposed between a substrate and a magnetic recording layer. A heatsink may have a second thickness and be disposed between the SUL and the magnetic recording layer. The first and second thicknesses may each be tuned to provide predetermined thermal conductivity and magnetic permeability throughout the data media.
摘要:
A magnetic stack includes multiple granular layers, at least one of the multiple granular layers is a magnetic layer that includes exchange coupled magnetic grains separated by a segregant having Ms greater than 100 emu/cc. Each of the multiple granular layers have anisotropic thermal conductivity.