Abstract:
A wireless communication method and system for performing bit-interleaved coded modulation and iterative decoding. The system includes a transmitter and a receiver. The transmitter encodes incoming bits to generate coded bits, punctures the coded bits in accordance with a predetermined puncturing pattern to generate surviving channel bits and stolen bits and interleaves the surviving bits into interleaved surviving bits. The interleaved surviving bits are mapped to channel symbols and the stolen bits are interleaved to generate interleaved stolen bits. At least one of a plurality of antennas is selected to transmit the channel symbols based on the value of the interleaved stolen bits. The receiver receives the transmitted channel symbols, estimates a posteriori probability for both the channel symbols and the stolen bits, and retrieves information of the stolen bits by determining the selected antenna used to transmit the channel symbols.
Abstract:
An antenna and radio frequency unit (ARFU) that is external to a wireless transmit/receive unit (WTRU) includes a radio frequency (RF) front end device and an antenna in communication with the RF front end device. The RF front end device is in communication with the WTRU.
Abstract:
A system and method for providing variable security levels in a wireless communication network. The present invention optimizes the often conflicting demands of highly secure wireless communications and high speed wireless communications. According to a preferred embodiment of the present invention, various security sensors are scanned to determine the likely presence of an intruder within a predetermined trust zone. If an intruder is likely present, the security level is changed to the highest setting, and consequently a lower data rate, while the intruder is identified. If the identified intruder is in fact a trusted node, the security level is returned to a lower setting. If the identified intruder is not a trusted node, the security level is maintained at an elevated state while the intruder is within the trust zone.
Abstract:
Signals encoded with watermark information are generated and broadcast into a protected area for capture by illicit recording devices along with their intended targets. An illicit recording in which at least a portion of the broadcast watermark signals are recorded is obtained and correlated with a known position of the broadcast watermark signals to yield the location of illicit recording devices. In an alternate embodiment, a surveillance device, being image and time synchronized with a signal broadcasting device, monitors and records the protected area. Illicit recordings containing the broadcast watermark are obtained and correlated with corresponding recordings taken by the surveillance device to identify the location of illicit recording devices. In an alternate embodiment, the surveillance device further monitors the quality of the broadcast watermark signals and adjusts them accordingly to achieve a desired quality level.
Abstract:
Method and apparatus for facilitating high level handoff decisions performed by a gateway device of a personal area network (PAN) which examines criteria regarding both the devices making up the PAN as well as the enterprise networks which are the subject of the potential handoff.
Abstract:
A spread spectrum method and apparatus for protecting and authenticating wirelessly transmitted digital information using numerous techniques. The apparatus may be a wireless code division multiple access (CDMA) communication system, a base station, a wireless transmit/receive unit (WTRU), a transmitter, a receiver and/or an integrated circuit (IC). The wireless CDMA communication system includes a transmitter which steganographically embeds digital information in a CDMA communication signal and wirelessly transmits the CDMA communication signal. The system further includes a receiver which receives the CDMA communication signal and extracts the steganographically embedded digital information from the received CDMA communication signal.
Abstract:
A system for supporting security and mobility management of wireless communications to multiple wireless transmit/receive units (WTRUs) includes a first database having a listing of each of the WTRUs along with their capabilities, and a second database having a listing of the location of each of the WTRUs. The second database has at least one subgroup which corresponds to at least two WTRUs which are co-located. The WTRUs in the subgroup are treated as a single WTRU for security and mobility management.
Abstract:
A wireless network provides controlled wireless communications with multi-mode wireless WTRUs. The wireless network has at least one base station having a transceiver operating in an infrastructure communication mode with multi mode WTRUs and a controller that transmits control signals via infrastructure communications with a WTRU that control peer-to-peer mode communications of that WTRU with other WTRUs. A WTRU has transceiver components configured for selective operation in an infrastructure communication mode with a network base station and in a peer-to-peer communication mode with other WTRUs. The WTRU also has a transceiver controller configured to selectively control peer-to-peer mode communications with other WTRUs based on communication signals received in infrastructure communications with a network base station. Preferably, the transceiver controller is configured to control the transceiver components to switch between infrastructure communication mode and peer-to-peer communication mode based on Quality of Service criteria.
Abstract:
A data flow is divided into multiple sub-flows. At least two of the sub-flows are routed through separate paths through one or multiple networks, and the sub-flows are received and combined to reconstruct an estimate of the original data flow. The separate paths may be result by placing different routing information in the headers of the packets of different sub-flows, by routing by a router the packets of each sub-flow differently, using different channels for the sub-flows or using different within channel paths, such as multipaths.
Abstract:
At least one At least one user data stream is layer 2/3 processed, physical layer processed and radio frequency processed. A watermark/signature is embedded at at least one of layer 2/3, physical layer or radio frequency, producing an embedded wireless communication. The embedded wireless communication is wirelessly transferred. The embedded wireless communication is received and the watermark/signature is extracted from the embedded wireless communication.