Abstract:
The display apparatus includes an airtight container having an insulating first substrate, an insulating second substrate which faces the first substrate, a conductive frame arranged between the first substrate and the second substrate, a conductive layer which is provided between the conductive frame and the first substrate and which is airtightly bonded to the conductive frame, and an insulating layer which is provided between the conductive layer and the first substrate and which airtightly bonds between the conductive layer and the first substrate; a display unit provided inside the airtight container; wires connected to the display unit; and electrodes. The insulating layer insulates the wires from the conductive frame and the electrodes and has through-holes penetrating from the electrodes toward the conductive frame, and the conductive layer is connected to the electrodes through the through-holes.
Abstract:
An electron beam apparatus 11 comprises a substrate 1, a first electrode wiring 2 formed on the substrate 1, an insulating layer 4 covering the first electrode wiring 2, a second electrode wiring 3 formed on the insulating layer 4 so as to cross the first electrode wiring 2, and on the substrate 1, an electron emitting device 6 located distant from an electrode wiring crossing region 9 where the first electrode wiring 2 and the second electrode wiring 3 cross each other, and connected to both the first electrode wiring 2 and the second electrode wiring 3 so as to receive drive energy from the first electrode wiring 2 and the second electrode wiring 3, wherein a void 5 is formed between the first electrode wiring 2 and the second electrode wiring 3 in at least a part of the electrode wiring crossing region 9.
Abstract:
The display apparatus includes an airtight container having an insulating first substrate, an insulating second substrate which faces the first substrate, a conductive frame arranged between the first substrate and the second substrate, a conductive layer which is provided between the conductive frame and the first substrate and which is airtightly bonded to the conductive frame, and an insulating layer which is provided between the conductive layer and the first substrate and which airtightly bonds between the conductive layer and the first substrate; a display unit provided inside the airtight container; wires connected to the display unit; and electrodes. The insulating layer insulates the wires from the conductive frame and the electrodes and has through-holes penetrating from the electrodes toward the conductive frame, and the conductive layer is connected to the electrodes through the through-holes.
Abstract:
A device includes a substrate, an insulating member disposed on a surface of the substrate, a gate, and a cathode. The insulating member has an upper surface apart from the surface of the substrate, and a side surface rising from the surface of the substrate between the upper surface and the surface of the substrate. The gate is disposed on the upper surface of the insulating member. The cathode is disposed on the side surface of the insulating member and has a portion opposing the gate. The side surface of the insulating member on which the cathode is disposed has a protruding portion protruding from an imaginary line connecting a position where the portion opposing the gate lies and a position where the insulating member rises from the surface of the substrate.
Abstract:
An electron emission device in an electron beam apparatus includes an insulating member having a recess on a surface thereof, a gate, and a cathode opposed to the gate via the recess. The recess has a depression formed in a surface of the recess.
Abstract:
An electron emission device in an electron beam apparatus includes an insulating member having a recess on a surface thereof, a gate, and a cathode opposed to the gate via the recess. The recess has a depression formed in a surface of the recess.
Abstract:
An electron-emitting device according to the present invention, comprises: an insulating member having a top face, a side face and a recess portion formed between the top face and the side face; a cathode electrode which is disposed on the side face and has an electron emitting portion located in a boundary portion between the side face and the recess portion; and a gate electrode which is disposed on the top face and of which an edge faces the electron emitting portion, wherein the boundary portion in which the electron emitting portion is located has concavity and convexity in a direction parallel to the top face.
Abstract:
An electron beam apparatus of which the electron emission efficiency is high and in which capacitance between a gate and a cathode is small is provided. In the electron beam apparatus which is equipped with the gate and the cathode respectively formed on the side surface of an insulating member and an anode arranged on an elongation of a Z direction, the gate and the cathode are shifted from each other in a Y direction and then arranged so that orthogonal projection of the gate to the anode and orthogonal projection of the cathode to the anode do not overlap each other.
Abstract:
A device includes a substrate, an insulating member disposed on a surface of the substrate, a gate, and a cathode. The insulating member has an upper surface apart from the surface of the substrate, and a side surface rising from the surface of the substrate between the upper surface and the surface of the substrate. The gate is disposed on the upper surface of the insulating member. The cathode is disposed on the side surface of the insulating member and has a portion opposing the gate. The side surface of the insulating member on which the cathode is disposed has a protruding portion protruding from an imaginary line connecting a position where the portion opposing the gate lies and a position where the insulating member rises from the surface of the substrate.
Abstract:
An electron beam apparatus 11 comprises a substrate 1, a first electrode wiring 2 formed on the substrate 1, an insulating layer 4 covering the first electrode wiring 2, a second electrode wiring 3 formed on the insulating layer 4 so as to cross the first electrode wiring 2, and on the substrate 1, an electron emitting device 6 located distant from an electrode wiring crossing region 9 where the first electrode wiring 2 and the second electrode wiring 3 cross each other, and connected to both the first electrode wiring 2 and the second electrode wiring 3 so as to receive drive energy from the first electrode wiring 2 and the second electrode wiring 3, wherein a void 5 is formed between the first electrode wiring 2 and the second electrode wiring 3 in at least a part of the electrode wiring crossing region 9.