摘要:
Methods and devices for determining optimal Atrial to Ventricular (AV) pacing intervals and Ventricular to Ventricular (VV) delay intervals in order to optimize cardiac output. Impedance, preferably sub-threshold impedance, is measured across the heart at selected cardiac cycle times as a measure of chamber expansion or contraction. One embodiment measures impedance over a long AV interval to obtain the minimum impedance, indicative of maximum ventricular expansion, in order to set the AV interval. Another embodiment measures impedance change over a cycle and varies the AV pace interval in a binary search to converge on the AV interval causing maximum impedance change indicative of maximum ventricular output. Another method varies the right ventricle to left ventricle (VV) interval to converge on an impedance maximum indicative of minimum cardiac volume at end systole. Another embodiment varies the VV interval to maximize impedance change.
摘要:
Methods and devices for determining optimal Atrial to Ventricular (AV) pacing intervals and Ventricular to Ventricular (VV) delay intervals in order to optimize cardiac output. Impedance, preferably sub-threshold impedance, is measured across the heart at selected cardiac cycle times as a measure of chamber expansion or contraction. One embodiment measures impedance over a long AV interval to obtain the minimum impedance, indicative of maximum ventricular expansion, in order to set the AV interval. Another embodiment measures impedance change over a cycle and varies the AV pace interval in a binary search to converge on the AV interval causing maximum impedance change indicative of maximum ventricular output. Another method varies the right ventricle to left ventricle (VV) interval to converge on an impedance maximum indicative of minimum cardiac volume at end systole. Another embodiment varies the VV interval to maximize impedance change.
摘要:
Methods and devices for determining optimal Atrial to Ventricular (AV) pacing intervals and Ventricular to Ventricular (VV) delay intervals in order to optimize cardiac output. Impedance, preferably sub-threshold impedance, is measured across the heart at selected cardiac cycle times as a measure of chamber expansion or contraction. One embodiment measures impedance over a long AV interval to obtain the minimum impedance, indicative of maximum ventricular expansion, in order to set the AV interval. Another embodiment measures impedance change over a cycle and varies the AV pace interval in a binary search to converge on the AV interval causing maximum impedance change indicative of maximum ventricular output. Another method varies the right ventricle to left ventricle (VV) interval to converge on an impedance maximum indicative of minimum cardiac volume at end systole. Another embodiment varies the VV interval to maximize impedance change.
摘要:
Impedance, e.g. sub-threshold impedance, is measured across the heart at selected cardiac cycle times as a measure of chamber expansion or contraction. One embodiment measures impedance over a long AV interval to obtain the minimum impedance, indicative of maximum ventricular expansion, in order to set the AV interval. Another embodiment measures impedance change over a cycle and varies the AV pace interval in a binary search to converge on the AV interval causing maximum impedance change indicative of maximum ventricular output. Another method varies the right ventricle to left ventricle (VV) interval to converge on an impedance maximum indicative of minimum cardiac volume at end systole. Another embodiment varies the VV interval to maximize impedance change. Other methods vary the AA interval to maximize impedance change over the entire cardiac cycle or during the atrial cycle.
摘要:
A method and system for improving or optimizing the collection of data from and the delivery of therapy to a patient by an implantable medical device (IMD) is disclosed which uses information about the patient's respiratory cycle.
摘要:
Methods and devices for determining optimal Atrial to Ventricular (AV) pacing intervals and Ventricular to Ventricular (VV) delay intervals in order to optimize cardiac output. Impedance, preferably sub-threshold impedance, is measured across the heart at selected cardiac cycle times as a measure of chamber expansion or contraction. One embodiment measures impedance over a long AV interval to obtain the minimum impedance, indicative of maximum ventricular expansion, in order to set the AV interval. Another embodiment measures impedance change over a cycle and varies the AV pace interval in a binary search to converge on the AV interval causing maximum impedance change indicative of maximum ventricular output. Another method varies the right ventricle to left ventricle (VV) interval to converge on an impedance maximum indicative of minimum cardiac volume at end systole. Another embodiment varies the VV interval to maximize impedance change.
摘要:
Electrical crosstalk between two implantable medical devices or two different therapy modules of a common implantable medical device may be evaluated, and, in some examples, mitigated. In some examples, one of the implantable medical devices or therapy modules delivers electrical stimulation to a nonmyocardial tissue site or a nonvascular cardiac tissue site, and the other implantable medical device or therapy module delivers cardiac rhythm management therapy to a heart of the patient.
摘要:
A method of left ventricular pacing including automated adjustment of a atrio-ventricular (AV) pacing delay interval and intrinsic AV nodal conduction testing. It includes—upon expiration or reset of a programmable AV Evaluation Interval (AVEI)—performing the following: temporarily increasing a paced AV interval and a sensed AV interval and testing for adequate AV conduction and measuring an intrinsic atrio-ventricular (PR) interval for a right ventricular (RV) chamber. In the event that the AV conduction test reveals an AV conduction block condition then a pacing mode-switch to a bi-ventricular (Bi-V) pacing mode occurs and the magnitude of the AVEI is increased.
摘要:
A therapy or monitoring system may implement one or more techniques to mitigate interference between operation of a charging device that charges a first implantable medical device (IMD) implanted in a patient and a second IMD implanted in the patient. In some examples, the techniques may include modifying an operating parameter of the charging device in response to receiving an indication that a second IMD is implanted in the patient. The techniques also may include modifying an operating parameter of the second IMD in response to detecting the presence or operation of the charging device.
摘要:
A first implantable medical device (IMD) implanted within a patient may communicate with a second IMD implanted within the patient by encoding information in an electrical stimulation signal. The delivery of the electrical stimulation signal may provide therapeutic benefits to the patient. The second IMD may sense the electrical stimulation signal, which may be presented as an artifact in a sensed cardiac signal, and process the sensed signal to retrieve the encoded information. The second IMD may modify its operation based on the received therapy information. Crosstalk between the first and second IMDs may be reduced using various techniques described herein. For example, the first IMD may generate the electrical stimulation signal to include a spread spectrum energy distribution or a predetermined signal signature. The second IMD may effectively remove a least some of the signal artifact in a sensed cardiac signal based on the predetermined signal signature.