Abstract:
An array substrate includes a transparent substrate, an organic insulation layer, a pixel electrode, a reflective layer, a light blocking pattern and a switching part. The transparent substrate includes a reflective window that reflects an ambient light and a transmissive window that transmits an artificial light. The organic insulation layer disposed over the transparent substrate becomes thinner gradually at a boundary between the transmissive window and the reflective window. The pixel electrode is formed in the transmissive region. The reflective layer is disposed over the organic insulation layer of the reflective window. The light blocking pattern is disposed at the boundary between the transmissive and reflective windows to prevent a light leakage. The switching part is electrically connected to the pixel electrode to apply an image signal to the pixel electrode. Therefore, a light leakage occurring at boundary is prevented by the light blocking pattern.
Abstract:
A reflective-transmissive type liquid crystal display device and a method for fabricating the reflective-transmissive type liquid crystal display device are provided. The reflective-transmissive type liquid crystal display device includes a pixel electrode having a transparent electrode for displaying information in a dark place where light is insufficiently provided, a reflective electrode for displaying information in a place where light is sufficiently provided, and an orientation film having an orientation groove provided on an upper surface of the pixel electrode, the direction of the orientation groove being varied depending on a shape of the reflective electrode. The reflective-transmissive type liquid crystal display device prevents the generation of an afterimage, which is generated when a response speed of liquid crystal is lowered due to the impurities or ions stacked at a boundary of the reflective electrode and the transparent electrode, thereby improving quality of display.
Abstract:
The invention includes a liquid crystal display panel including spacers and a method of making this panel. The spacers, which are positioned in the liquid crystal-filled gap between a first substrate and a second substrate, provide support to the substrates and prevent the substrate from bending when the device is used as a touch screen panel. By preventing the bending of the device, the spacers help prevent the undesirable ripple effect suffered by liquid crystal devices. In order to minimize the amount of light blocked by the spacers, the spacers are formed in a region where light is substantially intercepted anyway, such as in a contact hole. A black matrix layer is formed on the spacers. The spacers may be distributed unevenly between the substrates, depending on how much force each of the spacers will have to absorb in each area of the panel.
Abstract:
A liquid crystal display apparatus includes a lower substrate, an upper substrate and a liquid crystal layer interposed between the lower substrate and the upper substrate. The lower substrate includes a display part for displaying image and a driving part for providing the display part with a driving signal. The upper substrate includes a common electrode and an insulating member that electrically insulates the common electrode from the driving part. The insulating member has a lower dielectric constant than the liquid crystal layer. Thus, a parasitic capacitance between the driving part and the common electrode is reduced to prevent malfunction of the driving part, and a display quality is enhanced
Abstract:
A display substrate includes a substrate, a first capacitor electrode, a dielectric layer, a second capacitor electrode, and a transparent conductive electrode. The substrate includes an effective display region and a non-effective display region that surrounds the effective display region. The first capacitor electrode is in the non-effective display region. The dielectric layer is on the first capacitor electrode. The second capacitor electrode is on the dielectric layer corresponding to the first capacitor electrode. The transparent conductive electrode is positioned substantially in the effective display region. Therefore, the number of elements is decreased so that a size and a manufacturing cost of a display device are reduced.
Abstract:
A liquid crystal display device includes a first substrate, a second substrate and a liquid crystal interposed between said first and second substrates. The first substrate includes a plurality of thin film transistors, an organic insulating layer, said organic insulating layer including a contact hole exposing an output of each of said thin film transistors, a plurality of first electrodes disposed on said organic insulating layer and each connected with said output, and a viewing-angle varying section between the first electrodes, the viewing-angle varying section including a curved surface of a half-cylindrical shape and protruding from the organic insulating layer. The viewing-angle varying section has a symmetrical shape, and the portions of said first electrode disposed at each side of said viewing-angle varying section asymmetrically extend onto the curved surface of said viewing-angle varying section, to thereby change the reflection factor depending on an observation angle.
Abstract:
The invention includes a liquid crystal display panel including spacers and a method of making this panel. The spacers, which are positioned in the liquid crystal-filled gap between a first substrate and a second substrate, provide support to the substrates and prevent the substrate from bending when the device is used as a touch screen panel. By preventing the bending of the device, the spacers help prevent the undesirable ripple effect suffered by liquid crystal devices. In order to minimize the amount of light blocked by the spacers, the spacers are formed in a region where light is substantially intercepted anyway, such as in a contact hole. A black matrix layer is formed on the spacers. The spacers may be distributed unevenly between the substrates, depending on how much force each of the spacers will have to absorb in each area of the panel.