Abstract:
Reflective-type color display devices using polymer dispersed liquid crystals (PDLCs) and dyes are provided, the display devices including a pixel unit having PDLC layers that are disposed between first electrodes and second electrodes. The PDLC layers have different color dyes. The first electrodes are disposed on a first substrate and the second electrodes are disposed on a second substrate, wherein the first and second substrates are apart from each other. The pixel unit includes different color sub pixels.
Abstract:
A polymer dispersed display apparatus includes a polymer layer, and a plurality of liquid crystal drops dispersed in the polymer layer. Quantum dots emitting a plurality of colors of light are mixed in the liquid crystal drops. Therefore, the polymer dispersed display apparatus displays colors without the need for a color filter. Thus, the polymer dispersed display apparatus need not include a polarization plate and a color filter, so that a light usage efficiency of the polymer dispersed display apparatus increases.
Abstract:
Provided are display devices using electrochromism and PDLC and methods of driving the display devices. A display device may include a plurality of first electrodes and a plurality of second electrodes; a polymer dispersed liquid crystal (PDLC) layer between the first electrodes and the second electrodes; a plurality of third electrodes and a plurality of fourth electrodes; a plurality of electrochromic layers between the third electrodes and the fourth electrodes; and an electrolyte layer between the third electrodes and the fourth electrodes.
Abstract:
A color filter and display devices using the same are provided, the color filter includes a first electrode and a second electrode spaced apart from each other; and a variable filter layer between the first electrode and the second electrode. The variable filter layer includes a polymer, liquid crystal dispersed in the polymer, and a plurality of color display materials mixed in the liquid crystal.
Abstract:
A polymer dispersed display apparatus includes a polymer layer, and a plurality of liquid crystal drops dispersed in the polymer layer. Quantum dots emitting a plurality of colors of light are mixed in the liquid crystal drops. Therefore, the polymer dispersed display apparatus displays colors without the need for a color filter. Thus, the polymer dispersed display apparatus need not include a polarization plate and a color filter, so that a light usage efficiency of the polymer dispersed display apparatus increases.
Abstract:
Provided are display devices using electrochromism and PDLC and methods of driving the display devices. A display device may include a plurality of first electrodes and a plurality of second electrodes; a polymer dispersed liquid crystal (PDLC) layer between the first electrodes and the second electrodes; a plurality of third electrodes and a plurality of fourth electrodes; a plurality of electrochromic layers between the third electrodes and the fourth electrodes; and an electrolyte layer between the third electrodes and the fourth electrodes.
Abstract:
A field emission device using carbon nanotubes (CNTs) is provided. The field emission device includes a cathode on which a plurality of CNT emitters are arranged, a gate insulating layer having a through hole through which electrons emitted from the CNT emitters pass, and a gate electrode which corresponds to the through hole of the gate insulating layer and has an enlongated gate hole that forms an electric field having different strengths in a first direction and in a second direction orthogonal to the first direction.
Abstract:
A color filter and display devices using the same are provided, the color filter includes a first electrode and a second electrode spaced apart from each other; and a variable filter layer between the first electrode and the second electrode. The variable filter layer includes a polymer, liquid crystal dispersed in the polymer, and a plurality of color display materials mixed in the liquid crystal.
Abstract:
A display apparatus includes an active transflective device and a device panel. The active transflective device is configured to electrically control light transmissivity and light reflectivity. The display panel is configured to form an image by modulating at least one of light reflected and light transmitted by the active transflective device.
Abstract:
Provided are a composite for paste including carbon nanotubes (CNTs), an electron emitting device using the same, and a manufacturing method thereof. The provided composite for paste includes 5 to 40 parts by weight of CNTs, 5 to 50 parts by weight of alkali metal silicate, and 1 to 20 parts by weight of a binder. The provided electron emitting device includes electron emitting tips, which are located on cathode electrodes in wells and formed of the composite for paste including 5 to 40 parts by weight of CNTs, 5 to 50 parts by weight of alkali metal silicate, and 1 to 20 parts by weight of a binder. The electron emitting device has excellent stability and durability and uniformly emits electrons from a large area, thereby improving the overall performance of an apparatus using the electron emitting device.