摘要:
A solid-state imaging device with a structure such that an electrode for reading a signal charge is provided on one side of a light-receiving sensor portion constituting a pixel; a predetermined voltage signal V is applied to a light-shielding film formed to cover an image pickup area except the light-receiving sensor portion; a second-conductivity-type semiconductor area is formed in the center on the surface of a first-conductivity-type semiconductor area constituting a photo-electric conversion area of the light-receiving sensor portion; and areas containing a lower impurity concentration than that of the second-conductivity-type semiconductor area is formed on the surface of the first-conductivity-type semiconductor area at the end on the side of the electrode and at the opposite end on the side of a pixel-separation area.
摘要:
A solid-state imaging device with a structure such that an electrode for reading a signal charge is provided on one side of a light-receiving sensor portion constituting a pixel; a predetermined voltage signal V is applied to a light-shielding film formed to cover an image pickup area except the light-receiving sensor portion; a second-conductivity-type semiconductor area is formed in the center on the surface of a first-conductivity-type semiconductor area constituting a photo-electric conversion area of the light-receiving sensor portion; and areas containing a lower impurity concentration than that of the second-conductivity-type semiconductor area is formed on the surface of the first-conductivity-type semiconductor area at the end on the side of the electrode and at the opposite end on the side of a pixel-separation area.
摘要:
A solid-state imaging device with a structure such that an electrode for reading a signal charge is provided on one side of a light-receiving sensor portion constituting a pixel; a predetermined voltage signal V is applied to a light-shielding film formed to cover an image pickup area except the light-receiving sensor portion; a second-conductivity-type semiconductor area is formed in the center on the surface of a first-conductivity-type semiconductor area constituting a photo-electric conversion area of the light-receiving sensor portion; and areas containing a lower impurity concentration than that of the second-conductivity-type semiconductor area is formed on the surface of the first-conductivity-type semiconductor area at the end on the side of the electrode and at the opposite end on the side of a pixel-separation area.
摘要:
A solid-state imaging device with a structure such that an electrode for reading a signal charge is provided on one side of a light-receiving sensor portion constituting a pixel; a predetermined voltage signal V is applied to a light-shielding film formed to cover an image pickup area except the light-receiving sensor portion; a second-conductivity-type semiconductor area is formed in the center on the surface of a first-conductivity-type semiconductor area constituting a photo-electric conversion area of the light-receiving sensor portion; and areas containing a lower impurity concentration than that of the second-conductivity-type semiconductor area is formed on the surface of the first-conductivity-type semiconductor area at the end on the side of the electrode and at the opposite end on the side of a pixel-separation area.
摘要:
A solid-state imaging device with a structure such that an electrode for reading a signal charge is provided on one side of a light-receiving sensor portion constituting a pixel; a predetermined voltage signal V is applied to a light-shielding film formed to cover an image pickup area except the light-receiving sensor portion; a second-conductivity-type semiconductor area is formed in the center on the surface of a first-conductivity-type semiconductor area constituting a photo-electric conversion area of the light-receiving sensor portion; and areas containing a lower impurity concentration than that of the second-conductivity-type semiconductor area is formed on the surface of the first-conductivity-type semiconductor area at the end on the side of the electrode and at the opposite end on the side of a pixel-separation area.
摘要:
A solid-state image pickup device includes, in a substrate, a plurality of photoelectric conversion regions for subjecting incoming light to photoelectric conversion, a reading gate for reading a signal charge from the photoelectric conversion regions, and a transfer register (vertical register) for transferring the signal charge read by the reading gate. Therein, a groove is formed on the surface side of the substrate, and the transfer register and the reading gate are formed at the bottom part of the groove. With such a structure, in the solid-state image pickup device, reduction can be achieved for the smear characteristics, a reading voltage, noise, and others.
摘要:
A solid-state imaging device having an electrode for reading a signal charge is provided on one side of a light-receiving sensor portion constituting a pixel; a predetermined voltage signal applied to a light-shielding film formed to cover an image pickup area except the light-receiving sensor portion; a second-conductivity-type semiconductor area formed in the center on the surface of a first-conductivity-type semiconductor area constituting a photo-electric conversion area of the light-receiving sensor portion; and areas containing a lower impurity concentration than that of the second-conductivity-type semiconductor area formed on the surface of the first-conductivity-type semiconductor area at the end on the side of the electrode and at the opposite end on the side of a pixel-separation area.
摘要:
A solid-state imaging device with a structure such that an electrode for reading a signal charge is provided on one side of a light-receiving sensor portion constituting a pixel; a predetermined voltage signal V is applied to a light-shielding film formed to cover an image pickup area except the light-receiving sensor portion; a second-conductivity-type semiconductor area is formed in the center on the surface of a first-conductivity-type semiconductor area constituting a photo-electric conversion area of the light-receiving sensor portion; and areas containing a lower impurity concentration than that of the second-conductivity-type semiconductor area is formed on the surface of the first-conductivity-type semiconductor area at the end on the side of the electrode and at the opposite end on the side of a pixel-separation area.
摘要:
A solid-state imaging device that has a satisfactory noise characteristic and readout characteristic is provided by improving the noise characteristic and readout characteristic in a well balanced way.The solid-state imaging device has such a structure that an electrode 8 for reading a signal charge is provided on one side of a light-receiving sensor portion 11 constituting a pixel; a predetermined voltage signal V is applied to a light-shielding film 9 formed to cover an image pickup area except the light-receiving sensor portion 11; a second-conductivity-type semiconductor area 6 is formed in the center on the surface of a first-conductivity-type semiconductor area 2 constituting a photo-electric conversion area of the light-receiving sensor portion 11; and areas 10 (10A, 10B) containing a lower impurity concentration than that of the second-conductivity-type semiconductor area 6 is formed on the surface of the first-conductivity-type semiconductor area 2 at the end on the side of the electrode 8 and at the opposite end on the side of a pixel-separation area 3.
摘要:
A solid-state imaging device that has a satisfactory noise characteristic and readout characteristic is provided by improving the noise characteristic and readout characteristic in a well balanced way. The solid-state imaging device has such a structure that an electrode 8 for reading a signal charge is provided on one side of a light-receiving sensor portion 11 constituting a pixel; a predetermined voltage signal V is applied to a light-shielding film 9 formed to cover an image pickup area except the light-receiving sensor portion 11; a second-conductivity-type semiconductor area 6 is formed in the center on the surface of a first-conductivity-type semiconductor area 2 constituting a photo-electric conversion area of the light-receiving sensor portion 11; and areas 10 (10A, 10B) containing a lower impurity concentration than that of the second-conductivity-type semiconductor area 6 is formed on the surface of the first-conductivity-type semiconductor area 2 at the end on the side of the electrode 8 and at the opposite end on the side of a pixel-separation area 3.