摘要:
In a liquid crystal display device which performs image display by controlling a liquid crystal layer by a lateral electric field that is parallel with a substrate, the lateral electric field is formed by a black matrix and a pixel electrode. That is, a common electrode and a black matrix are commonized which are separately provided conventionally. Further, a storage capacitor is formed in an area where the black matrix and a pixel line coextend with a third interlayer insulating film interposed in between. Since the storage capacitor is formed by using all the area where a thin-film transistor is covered with the black matrix, sufficient capacitance can be secured even if the widths of electrodes and wiring lines are reduced in the future.
摘要:
In a liquid crystal display device which performs image display by controlling a liquid crystal layer by a lateral electric field that is parallel with a substrate, the lateral electric field is formed by a black matrix and a pixel electrode. That is, a common electrode and a black matrix are commonized which are separately provided conventionally. Further, a storage capacitor is formed in an area where the black matrix and a pixel line coextend with a third interlayer insulating film interposed in between. Since the storage capacitor is formed by using all the area where a thin-film transistor is covered with the black matrix, sufficient capacitance can be secured even if the widths of electrodes and wiring lines are reduced in the future.
摘要:
In a liquid crystal display device which performs image display by controlling a liquid crystal layer by a lateral electric field that is parallel with a substrate, the lateral electric field is formed by a black matrix and a pixel electrode. That is, a common electrode and a black matrix are commonized which are separately provided conventionally. Further, a storage capacitor is formed in an area where the black matrix and a pixel line coextend with a third interlayer insulating film interposed in between. Since the storage capacitor is formed by using all the area where a thin-film transistor is covered with the black matrix, sufficient capacitance can be secured even if the widths of electrodes and wiring lines are reduced in the future.
摘要:
In a liquid crystal display device which performs image display by controlling a liquid crystal layer by a lateral electric field that is parallel with a substrate, the lateral electric field is formed by a black matrix and a pixel electrode. That is, a common electrode and a black matrix are commonized which are separately provided conventionally. Further, a storage capacitor is formed in an area where the black matrix and a pixel line coextend with a third interlayer insulating film interposed in between. Since the storage capacitor is formed by using all the area where a thin-film transistor is covered with the black matrix, sufficient capacitance can be secured even if the widths of electrodes and wiring lines are reduced in the future.
摘要:
In a liquid crystal display device which performs image display by controlling a liquid crystal layer by a lateral electric field that is parallel with a substrate, the lateral electric field is formed by a black matrix and a pixel electrode. That is, a common electrode and a black matrix are commonized which are separately provided conventionally. Further, a storage capacitor is formed in an area where the black matrix and a pixel line coextend with a third interlayer insulating film interposed in between. Since the storage capacitor is formed by using all the area where a thin-film transistor is covered with the black matrix, sufficient capacitance can be secured even if the widths of electrodes and wiring lines are reduced in the future.
摘要:
In a liquid crystal display device which performs image display by controlling a liquid crystal layer by a lateral electric field that is parallel with a substrate, the lateral electric field is formed by a black matrix and a pixel electrode. That is, a common electrode and a black matrix are commonized which are separately provided conventionally. Further, a storage capacitor is formed in an area where the black matrix and a pixel line coextend with a third interlayer insulating film interposed in between. Since the storage capacitor is formed by using all the area where a thin-film transistor is covered with the black matrix, sufficient capacitance can be secured even if the widths of electrodes and wiring lines are reduced in the future.
摘要:
In a liquid crystal display device which performs image display by controlling a liquid crystal layer by a lateral electric field that is parallel with a substrate, the lateral electric field is formed by a black matrix and a pixel electrode. That is, a common electrode and a black matrix are commonized which are separately provided conventionally. Further, a storage capacitor is formed in an area where the black matrix and a pixel line coextend with a third interlayer insulating film interposed in between. Since the storage capacitor is formed by using all the area where a thin-film transistor is covered with the black matrix, sufficient capacitance can be secured even if the widths of electrodes wiring lines are reduced in the future.
摘要:
In an active matrix semiconductor display device in which pixel TFTs and driver circuit TFT are formed on the same substrate in an integral manner, the cell gap is controlled by gap retaining members that are disposed between a pixel area and driver circuit areas. This makes it possible to provide a uniform cell thickness profile over the entire semiconductor display device. Further, since conventional grainy spacers are not used, stress is not imposed on the driver circuit TFTs when a TFT substrate and an opposed substrate are bonded together. This prevents the driver circuit TFTs from being damaged.
摘要:
In an active matrix semiconductor display device in which pixel TFTs and driver circuit TFT are formed on the same substrate in an integral manner, the cell gap is controlled by gap retaining members that are disposed between a pixel area and driver circuit areas. This makes it possible to provide a uniform cell thickness profile over the entire semiconductor display device. Further, since conventional grainy spacers are not used, stress is not imposed on the driver circuit TFTs when a TFT substrate and an opposed substrate are bonded together. This prevents the driver circuit TFTs from being damaged.
摘要:
A light-emitting device is disclosed capable of reducing the variation of an emission spectrum depending on an angle of viewing a light extraction surface. More particularly, a light-emitting device is disclosed capable of preventing impurities from dispersing from a light-emitting element into a thin film transistor as well as reducing the variation of an emission spectrum depending on an angle of viewing a light extraction surface. The disclosed light-emitting device comprises a substrate; a first insulating layer provided over the substrate; a transistor provided over the first insulating layer; and a second insulating layer having a first opening portion so that the transistor is covered and the substrate is exposed; wherein a light-emitting element is provided inside the first opening portion.