摘要:
A natural circulation boiling water reactor includes a reactor pressure vessel, a chimney including a lattice member and arranged above a core in said reactor pressure vessel, and a plurality of thermocouple extension wire pulling conduits into which at least one temperature detection thermocouple and at least one cable connected to the temperature detection thermocouple are inserted. At least one of thermocouple extension wire pulling conduits is disposed on an upper end surface of the lattice member and is directly mounted to the upper end surface of the lattice member.
摘要:
A natural circulation boiling water reactor includes a reactor pressure vessel, a chimney including a lattice member and arranged above a core in the reactor pressure vessel, and at least one thermocouple extension wire pulling conduit into which a temperature detection thermocouple and a cable connected to said temperature detection thermocouple are inserted. The thermocouple extension wire pulling conduit is disposed on an upper end surface of the lattice member and mounted to the upper end surface of the lattice member.
摘要:
A chimney lattice is arranged in a reactor pressure vessel. Thermocouple extension wire pulling conduits inserting a temperature detection thermocouple and a cable connected to the thermocouple are mounted to the upper end of the chimney lattice. By mounting the thermocouple extension wire pulling conduit on the upper end of the chimney lattice, the thermocouple extension wire pulling conduit does not become an obstacle when the fuel assembly is taken out from the chimney. Because the thermocouple extension wire pulling conduit is installed at the upper end of the chimney, the replacement of the thermocouple damaged is easy.
摘要:
In order to stably control a nuclear reactor in a short time, so as not to enter an unstable region that is determined by the relationship between the reactor pressure, the reactor power and the subcooling of the core inlet coolant at start-up time, the nuclear reactor system comprises: an power control apparatus for generating a control rod operation signal for operating a control rod, based on the reactor water temperature change rate; a feed water control apparatus for generating a feed water flow rate signal and a discharge water flow rate signals based on the reactor water level signal; and a process computer for performing overall control of the power control apparatus and the feed water control apparatus, wherein the feed water control apparatus has the reactor water temperature change rate setting section for adjusting the reactor water temperature change rate set value based on the variation of the reactor water level signal.
摘要:
In order to stably control a nuclear reactor in a short time, so as not to enter an unstable region that is determined by the relationship between the reactor pressure, the reactor power and the subcooling of the core inlet coolant at start-up time, the nuclear reactor system comprises: an power control apparatus for generating a control rod operation signal for operating a control rod, based on the reactor water temperature change rate; a feed water control apparatus for generating a feed water flow rate signal and a discharge water flow rate signals based on the reactor water level signal; and a process computer for performing overall control of the power control apparatus and the feed water control apparatus, wherein the feed water control apparatus has the reactor water temperature change rate setting section for adjusting the reactor water temperature change rate set value based on the variation of the reactor water level signal.
摘要:
A ratio of the number of fuel assemblies loaded on a core to the number of control rod drive mechanisms is 3 or more. The fuel assembly itself contains mixed oxides of a low enrichment concentration uranium oxide containing 3 to 8 wt % in the average enrichment concentration of the fuel assembly, or mixed oxide containing not less than 2 wt %, but less than 6 wt % in the average enrichment concentration of fissile plutonium of. In the burner type BWR core on which the fuel assemblies are loaded, an average weight density of uranium, plutonium and minor actinides is 2.1 to 3.4 kg/L as a conversion at the value of unburned state.
摘要:
A ratio of the number of fuel assemblies loaded on a core to the number of control rod drive mechanisms is 3 or more. The fuel assembly itself contains mixed oxides of a low enrichment concentration uranium oxide containing 3 to 8 wt % in the average enrichment concentration of the fuel assembly, or mixed oxide containing not less than 2 wt %, but less than 6 wt % in the average enrichment concentration of fissile plutonium of. In the burner type BWR core on which the fuel assemblies are loaded, an average weight density of uranium, plutonium and minor actinides is 2.1 to 3.4 kg/L as a conversion at the value of unburned state.
摘要:
A ratio of the number of fuel assemblies loaded on a core to the number of control rod drive mechanisms is 3 or more. The fuel assembly itself contains mixed oxides of a low enrichment concentration uranium oxide containing 3 to 8 wt % in the average enrichment concentration of the fuel assembly, or mixed oxide containing not less than 2 wt %, but less than 6 wt % in the average enrichment concentration of fissile plutonium of. In the burner type BWR core on which the fuel assemblies are loaded, an average weight density of uranium, plutonium and minor actinides is 2.1 to 3.4 kg/L as a conversion at the value of unburned state.
摘要:
A ratio of the number of fuel assemblies loaded on a core to the number of control rod drive mechanisms is 3 or more. The fuel assembly itself contains mixed oxides of a low enrichment concentration uranium oxide containing 3 to 8 wt % in the average enrichment concentration of the fuel assembly, or mixed oxidecontaining not less than 2 wt %, but less than 6 wt % in the average enrichment concentration of fissile plutonium of. In the burner type BWR core on which the fuel assemblies are loaded, an average weight density of uranium, plutonium and minor actinides is 2.1 to 3.4 kg/L as a conversion at the value of unburned state.