摘要:
The high strength galvanized steel sheet contains C: more than 0.015% and lower than 0.100%, Si: 0.3% or lower, Mn: lower than 1.90%, P: 0.015% or more and 0.05% or lower, S: 0.03% or lower, sol.Al: 0.01% or more and 0.5% or lower, N: 0.005% or lower, Cr: lower than 0.30%, B: 0.0003% or more and 0.005% or lower, and Ti: lower than 0.014% in terms of mass %, and satisfies 2.2≦[Mneq]≦3.1 and 0.42≦8[% P]+150B*≦0.73. The steel microstructure contains ferrite and a second phase, in which the second phase area ratio is 3 to 15%, the ratio of the area ratio of martensite and retained γ to the second phase area ratio is more than 70%, and 50% or more of the area ratio of the second phase exists in the grain boundary triple point.
摘要:
A multiphase steel sheet has a steel composition containing, in percent by mass, more than 0.015% to less than 0.100% of carbon, less than 0.40% of silicon, 1.0% to 1.9% of manganese, more than 0.015% to 0.05% of phosphorus, 0.03% or less of sulfur, 0.01% to 0.3% of soluble aluminum, 0.005% or less of nitrogen, less than 0.30% of chromium, 0.0050% or less of boron, less than 0.15% of molybdenum, 0.4% or less of vanadium, 0.02% or less of titanium, wherein [Mneq] is 2.0 to 2.8, the balance being iron and incidental impurities.
摘要:
The high strength galvanized steel sheet contains C: more than 0.015% and lower than 0.100%, Si: 0.3% or lower, Mn: lower than 1.90%, P: 0.015% or more and 0.05% or lower, S: 0.03% or lower, sol.Al: 0.01% or more and 0.5% or lower, N: 0.005% or lower, Cr: lower than 0.30%, B: 0.0003% or more and 0.005% or lower, and Ti: lower than 0.014% in terms of mass %, and satisfies 2.2≦[Mneq]≦3.1 and 0.42≦8[% P]+150B*≦0.73. The steel microstructure contains ferrite and a second phase, in which the second phase area ratio is 3 to 15%, the ratio of the area ratio of martensite and retained γ to the second phase area ratio is more than 70%, and 50% or more of the area ratio of the second phase exists in the grain boundary triple point.
摘要:
A high-strength galvanized steel sheet has a low YP, good stretch flangeability, and excellent corrosion resistance and contains, on a percent by mass basis, more than 0.015% to less than 0.10% of C, 0.5% or less of Si, 1.0% to 1.9% of Mn, 0.015% to 0.050% of P, 0.03% or less of S, 0.01% to 0.5% of sol. Al, 0.005% or less of N, less than 0.40% of Cr, 0.005% or less of B, less than 0.15% of Mo, 0.4% or less of V, and less than 0.020% of Ti, in which 2.2≦[Mneq]≦3.1 and [% Mn]+3.3[% Mo]≦1.9, and [% Mn]+3.3[% Mo])/(1.3[% Cr]+8[% P]+150B*)
摘要:
A multiphase steel sheet has a steel composition containing, in percent by mass, more than 0.015% to less than 0.100% of carbon, less than 0.40% of silicon, 1.0% to 1.9% of manganese, more than 0.015% to 0.05% of phosphorus, 0.03% or less of sulfur, 0.01% to 0.3% of soluble aluminum, 0.005% or less of nitrogen, less than 0.30% of chromium, 0.0050% or less of boron, less than 0.15% of molybdenum, 0.4% or less of vanadium, 0.02% or less of titanium, wherein [Mneq] is 2.0 to 2.8, the balance being iron and incidental impurities.
摘要:
A high-strength galvanized steel sheet has a low YP, good stretch flangeability, and excellent corrosion resistance and contains, on a percent by mass basis, more than 0.015% to less than 0.10% of C, 0.5% or less of Si, 1.0% to 1.9% of Mn, 0.015% to 0.050% of P, 0.03% or less of S, 0.01% to 0.5% of sol. Al, 0.005% or less of N, less than 0.40% of Cr, 0.005% or less of B, less than 0.15% of Mo, 0.4% or less of V, and less than 0.020% of Ti, in which 2.2≦[Mneq]≦3.1 and [% Mn]+3.3[% Mo]≦1.9, and [% Mn]+3.3 [% Mo])/(1.3[% Cr]+8[% P]+150B*)
摘要:
A method of manufacturing a hot dip galvannealed steel sheet, including the steps of: subjecting a steel sheet to hot dip galvanizing to manufacture a hot dip galvanized steel sheet; heating the hot dip galvanized steel sheet for alloying; subjecting the hot dip galvanized steel sheet to temper rolling; bringing the temper-rolled hot dip galvanized steel sheet into contact with an acid solution containing at least one ion selected from the group consisting of Zr ions, Ti ions, and Sn ions to thereby form an acid solution film on the surface of the steel sheet; after completion of the contact, a state where the acid solution film is formed on the surface of the steel sheet is held for at least 1 second; and washing with water the hot dip galvanized steel sheet after holding, to thereby form a Zn oxide layer having a thickness of 10 nm or more on the surface of the galvanized steel sheet. The hot dip galvannealed steel sheet has an oxide layer having an average thickness of 10 nm or more on the surface of the plated steel sheet.
摘要:
The invention provides a hot dip galvanized steel sheet which has: a hot dip galvanizing layer having a flat part on a surface thereof; and a film formed on the flat part. The film is composed of a compound containing Zn, Fe, and O, having an average film thickness A in a range from 10 to 100 nm determined by an element analysis of the film, and has {[Fe]/([Zn]+[Fe])} in the film in a range from 0.002 to 0.25, where [Zn] and [Fe] designate the content (% by atom) of Zn and Fe in the film, respectively. Since the hot dip galvanized steel sheet of the invention has excellent press-formability, bondability, and phosphatability, it is suitable for automobiles and electrical appliances.
摘要:
The invention provides a hot dip galvanized steel sheet which has: a hot dip galvanizing layer having a flat part on a surface thereof; and a film formed on the flat part. The film is composed of a compound containing Zn, Fe, and O, having an average film thickness A in a range from 10 to 100 nm determined by an element analysis of the film, and has {[Fe]/([Zn]+[Fe])} in the film in a range from 0.002 to 0.25, where [Zn] and [Fe] designate the content (% by atom) of Zn and Fe in the film, respectively. Since the hot dip galvanized steel sheet of the invention has excellent press-formability, bondability, and phosphatability, it is suitable for automobiles and electrical appliances.
摘要:
A method of manufacturing a hot dip galvannealed steel sheet, including the steps of: subjecting a steel sheet to hot dip galvanizing to manufacture a hot dip galvanized steel sheet; heating the hot dip galvanized steel sheet for alloying; subjecting the hot dip galvanized steel sheet to temper rolling; bringing the temper-rolled hot dip galvanized steel sheet into contact with an acid solution containing at least one ion selected from the group consisting of Zr ions, Ti ions, and Sn ions to thereby form an acid solution film on the surface of the steel sheet; after completion of the contact, a state where the acid solution film is formed on the surface of the steel sheet is held for at least 1 second; and washing with water the hot dip galvanized steel sheet after holding, to thereby form a Zn oxide layer having a thickness of 10 nm or more on the surface of the galvanized steel sheet. The hot dip galvannealed steel sheet has an oxide layer having an average thickness of 10 nm or more on the surface of the plated steel sheet.