摘要:
A method of manufacturing an organic transistor active substrate is disclosed. The organic transistor active substrate includes an organic transistor in which a first electrode is formed on a substrate, a first insulating film is formed on the first electrode, a pair of second electrodes is formed on the first insulating film, and an active layer made of an organic semiconductor material is formed on the pair of second electrodes. The organic transistor is laminated with a second insulating film, and the second insulating film is laminated with a third electrode which is electrically coupled to one of the second electrodes via a through-hole provided through the second insulating film. The first electrode is formed by inkjet ejection; the first insulating film is formed by coating; the pair of second electrodes is formed by inkjet ejection; the active layer is formed by inkjet ejection; the second insulating film is formed by screen printing; and the third electrode is formed by screen printing.
摘要:
A method of manufacturing an organic transistor active substrate is disclosed. The organic transistor active substrate includes an organic transistor in which a first electrode is formed on a substrate, a first insulating film is formed on the first electrode, a pair of second electrodes is formed on the first insulating film, and an active layer made of an organic semiconductor material is formed on the pair of second electrodes. The organic transistor is laminated with a second insulating film, and the second insulating film is laminated with a third electrode which is electrically coupled to one of the second electrodes via a through-hole provided through the second insulating film. The first electrode is formed by inkjet ejection; the first insulating film is formed by coating; the pair of second electrodes is formed by inkjet ejection; the active layer is formed by inkjet ejection; the second insulating film is formed by screen printing; and the third electrode is formed by screen printing.
摘要:
A disclosed laminated structure includes a wettability-variable layer containing a wettability-variable material whose surface energy changes when energy is applied thereto and including at least a high-surface-energy area having high surface energy and a low-surface-energy area having low surface energy; and a conductive layer formed on the high-surface-energy area. The high-surface-energy area includes a first area and a second area extending from the first area and having a width smaller than that of the first area.
摘要:
A disclosed laminated structure includes a wettability-variable layer containing a wettability-variable material whose surface energy changes when energy is applied thereto and including at least a high-surface-energy area having high surface energy and a low-surface-energy area having low surface energy; and a conductive layer formed on the high-surface-energy area. The high-surface-energy area includes a first area and a second area extending from the first area and having a width smaller than that of the first area.
摘要:
A disclosed laminated structure includes a wettability-variable layer containing a wettability-variable material whose surface energy changes when energy is applied thereto and including at least a high-surface-energy area having high surface energy and a low-surface-energy area having low surface energy; and a conductive layer formed on the high-surface-energy area. The high-surface-energy area includes a first area and a second area extending from the first area and having a width smaller than that of the first area.
摘要:
A disclosed laminated structure includes a wettability-variable layer containing a wettability-variable material whose surface energy changes when energy is applied thereto and including at least a high-surface-energy area having high surface energy and a low-surface-energy area having low surface energy; and a conductive layer formed on the high-surface-energy area. The high-surface-energy area includes a first area and a second area extending from the first area and having a width smaller than that of the first area.
摘要:
An aryl amine polymer is provided which contains a specific repeat unit, its use in preparing an organic semiconductor material which contains the aryl amine polymer and an additional specific compound and in the preparation of organic light emitting devices (OLED), organic thin film transistors (TFT) and so on, along with an organic TFT including a substrate, an organic semiconductor layer which contains the organic semiconductor material and is located overlying the substrate, an electrode pair of a source electrode and a drain electrode; and a third electrode.
摘要:
An aryl amine polymer is provided which contains a specific repeat unit, its use in preparing an organic semiconductor material which contains the aryl amine polymer and an additional specific compound and in the preparation of organic light emitting devices (OLED), organic thin film transistors (TFT) and so on, along with an organic TFT including a substrate, an organic semiconductor layer which contains the organic semiconductor material and is located overlying the substrate, an electrode pair of a source electrode and a drain electrode; and a third electrode.
摘要:
An aryl amine polymer is provided which contains a specific repeat unit, its use in preparing an organic semiconductor material which contains the aryl amine polymer and an additional specific compound and in the preparation of organic light emitting devices (OLED), organic thin film transistors (TFT) and so on, along with an organic TFT including a substrate, an organic semiconductor layer which contains the organic semiconductor material and is located overlying the substrate, an electrode pair of a source electrode and a drain electrode; and a third electrode.
摘要:
An organic transistor includes a substrate; a gate electrode and a gate insulating film sequentially formed on the substrate in the stated order; and a source electrode, a drain electrode, and an organic semiconductor layer formed on at least the gate insulating film. Ultraviolet light is radiated to the substrate from a side without the gate electrode, transmitted through the substrate and the gate insulating film, reflected at the gate electrode, and absorbed at the organic semiconductor layer. Conductivity of the organic semiconductor layer that has absorbed the ultraviolet light is lower than that of the organic semiconductor layer that has not absorbed the ultraviolet light.