Abstract:
A device for phasing a threaded grinding stone is phased with respect to a workpiece or a disk dresser prior to the engagement of the threaded grinding stone with the workpiece or with the disk dresser during grinding or dressing. In performing this phasing, it is detected, by means of an AE fluid sensor provided to a grinding stone head which rotatably supports the threaded grinding stone, whether the threaded grinding stone has had contact with the workpiece or the disk dresser. Subsequently, on the basis of the phase of the threaded grinding stone at the time when contact was detected, the threaded grinding stone is positioned in a phase where the aforementioned engagement is feasible.
Abstract:
Provided is a method of phasing a threaded grinding stone, as well as a device therefor, the aforementioned method and device being such that contact or non-contact of a threaded grinding stone with a disk dresser can be detected with high accuracy, with the result that the phasing of the threaded grinding stone can be accurately performed. For the purpose of achieving the above, a threaded grinding stone (14) is phased with respect to a disk dresser (32) prior to the engagement of the threaded grinding stone (14) with the disk dresser (32) during dressing. In performing this phasing, it is determined whether or not the threaded grinding stone (14) contacted the disk dresser (32), on the basis of a voltage (V) which is commensurate with the amplitude of the elastic wave generated in the threaded grinding stone (14) at the time when the threaded grinding stone (14) contacted the disk dresser (32). In a case where the voltage (V) does not exceed a threshold value (Vo) even if the threaded grinding stone (14) contacts the disk dresser (32), then the rotational speed of the disk dresser (32) is increased, with the result that there is forcibly created a situation where it is determined that contact occurred. Subsequently, the threaded grinding stone (14) is positioned, on the basis of the resulting phase thereof, in an intermediate phase where the aforementioned engagement is feasible.
Abstract:
Provided is a method of phasing a threaded grinding stone, as well as a device therefor, the aforementioned method and device being such that contact or non-contact of a threaded grinding stone with a disk dresser can be detected with high accuracy, with the result that the phasing of the threaded grinding stone can be accurately performed. For the purpose of achieving the above, a threaded grinding stone (14) is phased with respect to a disk dresser (32) prior to the engagement of the threaded grinding stone (14) with the disk dresser (32) during dressing. In performing this phasing, it is determined whether or not the threaded grinding stone (14) contacted the disk dresser (32), on the basis of a voltage (V) which is commensurate with the amplitude of the elastic wave generated in the threaded grinding stone (14) at the time when the threaded grinding stone (14) contacted the disk dresser (32). In a case where the voltage (V) does not exceed a threshold value (Vo) even if the threaded grinding stone (14) contacts the disk dresser (32), then the rotational speed of the disk dresser (32) is increased, with the result that there is forcibly created a situation where it is determined that contact occurred. Subsequently, the threaded grinding stone (14) is positioned, on the basis of the resulting phase thereof, in an intermediate phase where the aforementioned engagement is feasible.
Abstract:
A device for phasing a threaded grinding stone is phased with respect to a workpiece or a disk dresser prior to the engagement of the threaded grinding stone with the workpiece or with the disk dresser during grinding or dressing. In performing this phasing, it is detected, by means of an AE fluid sensor provided to a grinding stone head which rotatably supports the threaded grinding stone, whether the threaded grinding stone has had contact with the workpiece or the disk dresser. Subsequently, on the basis of the phase of the threaded grinding stone at the time when contact was detected, the threaded grinding stone is positioned in a phase where the aforementioned engagement is feasible.
Abstract:
A method of phasing a threaded grinding stone and a gear grinding machine are disclosed, wherein phasing of the threaded grinding stone with respect to a gear to be machined or to a dresser can be performed at high speed. A threaded grinding stone is phased with respect to a workpiece or a disk dresser prior to engagement. The phase of the threaded grinding stone is adjusted so that a tooth tip of the workpiece or a blade tip of the disk dresser faces the central position of an edge groove of the grinding stone. Subsequently an edge surface of the threaded grinding stone contacts an edge surface of the workpiece or an edge surface of the disk dresser. The phase of the threaded grinding stone is adjusted so that the tooth tip of the workpiece or the blade tip of the disk dresser is disposed in this latter phase.
Abstract:
Provided is a method of making a barrel-shaped worm-like tool whereby a barrel-shaped worm-like tool capable of efficiently performing grinding without unequal wear can easily be made. The aforementioned method comprises making the barrel-shaped worm-like tool (12) by using a dressing gear (11) to dress the barrel-shaped worm-like tool (12), which is used for machining an internal gear and has a diameter that gradually increases from the ends (12b, 12c) to the center (12a) in the axial direction. On the basis of data wherein the number of teeth is less than that of the internal gear to be machined, the dressing gear (11) and the barrel-shaped worm-like tool (12) are engaged with each other at the same axial intersection angle as during gear-machining performed by the barrel-shaped worm-like tool (12).
Abstract:
A personal computer has correction coefficients (α) for tooth-profile error correction and correction coefficients (β) for meshing position correction which are set for each number of times a shaving cutter is sharpened, and for each cutter feature of the shaving cutter. Target tooth-profile data (Do), tooth-profile error data (ΔD) which is the difference between the target tooth-profile data (Do) and measured tooth-profile data (Dm), and the correction coefficient (α) and the correction coefficient (β) captured in correspondence with the number of times sharpening is performed, and the cutter features are applied to an equation Dcc=Do+α·ΔD+β to find aimed tooth-profile data (Dcc). Shaving-cutter tooth-profile data (ds) is found from the aimed tooth-profile data (Dcc). Thus, the shaving cutter can be sharpened appropriately even when the outer diameter and tooth thickness of the shaving cutter are reduced by sharpening the shaving cutter.
Abstract translation:个人计算机具有用于齿廓修正的校正系数(α)和针对剃须刀被削尖的每个次数设定的啮合位置校正的校正系数(&bgr),以及剃须刀的每个切割器特征。 目标齿廓数据(Do),作为目标齿廓数据(Do)与测量齿廓数据(Dm)之间的差异的齿廓误差数据(&Dgr; D)和校正系数(α) 并且与执行锐化次数相对应地捕获的校正系数(&bgr),并且切割器特征被应用于等式Dcc = Do +α·&Dgr; D +&bgr; 找到目标牙齿轮廓数据(Dcc)。 从目标牙齿轮廓数据(Dcc)中可以看到剃刀齿廓数据(ds)。 因此,即使通过磨削剃须刀来减少剃须刀的外径和齿厚度,也可以适当地削尖剃须刀。
Abstract:
Disclosed is a method for dressing a threaded grinding stone for internal gear grinding, by which a threaded grinding stone for grinding an internal gear can be dressed with a high degree of accuracy by using a dressing gear that has been produced with a high degree of accuracy. In a state in which a barrel-shaped threaded grinding stone (11), which is disposed at an axial angle (Σ) to the internal gear (W) that is conferred during the grinding of said internal gear (W), and an external tooth-type dressing gear (13), which is capable of meshing with a virtual external gear (14) virtually formed in a manner so as to mesh with the internal gear (W) in place of the threaded grinding stone (11) disposed at the axial angle (Σ), have been meshed together, the threaded grinding stone (11) and the dressing gear (13) are simultaneously rotated while being moved relatively in a circular arc in the X-Y plane, whereby the dressing gear (13) dresses along the entire area in the axis direction of the threaded grinding stone (11).
Abstract:
Provided is a gear grinding method wherein an initial cutting position by a grindstone is appropriately set, resulting in an improvement being able to be made in machining accuracy. For this purpose, the gear grinding method is such that rotation of a workpiece (W) about a workpiece rotation axis (C), cutting by a grindstone (15) in the X-axis direction, and feeding of the grindstone (15) in the Z-axis direction are controlled, resulting in the workpiece (W) being ground by the grindstone (15). In this method, measurement points (P1-P9) are set in a grid-like pattern on a left tooth surface (WL) and a right tooth surface (WR) of a predetermined tooth (Wa) of the workpiece (W); rotation phases about the workpiece rotation axis (C) at the measurement points (P1-P9) are detected; tooth thickness deviation amounts (e) between a reference involute tooth surface and the measurement points (P1-P9) on the left and right tooth surfaces, as well as tooth thickness deviation amounts (e) between the involute tooth surface and corresponding points (Q1-Q9) on all teeth other than the tooth (Wa), are obtained on the basis of the detected rotation phases; and an initial cutting position (X1) for the grindstone (15) is set on the basis of the largest of the deviation amounts (e).
Abstract:
An object is to provide an internal gear grinding machine and a dressing method for a barrel-shaped threaded tool which make it possible to achieve space savings and reduce the size of a machine by simplifying dressing operation. To achieve the object, an internal gear grinding machine for use in grinding a workpiece (W) by synchronously rotating the workpiece (W) and a barrel-shaped threaded grinding wheel (17) in mesh with each other includes a dressing device (20) for dressing the threaded tool (17) by meshing the threaded grinding wheel (17) with a disk dresser (56). At the time of dressing, the threaded grinding wheel (17) and the disc dresser (56) are operated in accordance with the helix angle and the barrel shape of the threaded grinding wheel (17).