Abstract:
Disclosed is a pneumatic tire which is allowed to increase block stiffness not only during braking and driving but also during cornering, and is allowed thereby to compatibly enhance tire performances both during braking and driving and during cornering. The pneumatic tire of the present invention is one where a plurality of longitudinal grooves extending in a tire circumferential direction and a plurality of lateral grooves extending in a tire widthwise direction are provided in a tread portion, a plurality of blocks are defined by these longitudinal and lateral grooves, and a plurality of sipes extending in the tire widthwise direction are provided to each of the blocks, wherein, with regard to each of the sipes, a zigzag shape is formed on a tread surface, bent portions ranging in the tire widthwise direction while bent in the tire circumferential direction are formed inside the block at at least two positions in the tire radial direction, and a zigzag shape with an amplitude in the tire radial direction is formed in each of the bent portions.
Abstract:
Provided is a run flat tire having an enhanced ride comfort in running on general road surfaces and an enhanced driving stability on snowy road surfaces at the time when the tire is not punctured, as well as an enhanced maneuverability, particularly starting ability, on icy road surfaces in run-flat running where the tire is punctured. Three belt layers (8, 9, 10) are disposed on an outer circumferential side of a carcass layer (6) in a tread portion (4). In addition, as to the three belt layers, the cord angle α of the innermost belt layer (8) with respect to a circumferential direction of the tire is set at 15° to 30°, the cord angle β of the intermediate belt layer (9) with respect to the circumferential direction of the tire is set at not less than 40°, and the cord angle γ of the outermost belt layer (10) with respect to the circumferential direction of the tire is set at 35° to 70°.
Abstract:
Disclosed is a pneumatic tire which is allowed to increase block stiffness not only during braking and driving but also during cornering, and is allowed thereby to compatibly enhance tire performances both during braking and driving and during cornering. The pneumatic tire of the present invention is one where a plurality of longitudinal grooves extending in a tire circumferential direction and a plurality of lateral grooves extending in a tire widthwise direction are provided in a tread portion, a plurality of blocks are defined by these longitudinal and lateral grooves, and a plurality of sipes extending in the tire widthwise direction are provided to each of the blocks, wherein, with regard to each of the sipes, a zigzag shape is formed on a tread surface, bent portions ranging in the tire widthwise direction while bent in the tire circumferential direction are formed inside the block at at least two positions in the tire radial direction, and a zigzag shape with an amplitude in the tire radial direction is formed in each of the bent portions.
Abstract:
Provided are a pneumatic tire with a durability which is improved by preventing oxygen deterioration of coating rubber of a reinforcement layer, and a method of manufacturing the pneumatic tire. The pneumatic tire according to the present invention is a pneumatic tire including a reinforcement layer having reinforcement cords. In the pneumatic tire, the reinforcement layer is covered with thin films each made of a thermoplastic resin or a thermoplastic elastomer composition obtained by blending a thermoplastic resin with an elastomer in a way that the reinforcement is wrapped with the thin films. A method of manufacturing the pneumatic tire includes: arranging a thin film made of a thermoplastic resin or a thermoplastic elastomer composition on an outer periphery of a making drum, the thermoplastic elastomer composition being obtained by blending a thermoplastic resin with an elastomer; arranging a reinforcement layer including reinforcement cords on an outer periphery of the thin film; arranging another thin film on an outer periphery of the reinforcement layer; covering the reinforcement layer with these thin films in a way that the reinforcement layer is wrapped with the thin films; making an uncured tire including the reinforcement layer; and curing the uncured tire.
Abstract:
A pneumatic tire for use on iced and snowed road surfaces has a tread surface. The tread surface has a plurality of main grooves extending in a circumferential direction of the tire and a plurality of lateral grooves extending in a width direction of the tire. Blocks are defined by the main grooves and the lateral grooves. The blocks have a ground contact face which has a plurality of pairs of sipes comprising a left sipe and a right sipe extending in the tire width direction. The plurality of pairs of sipes are placed in a predetermined interval in the tire circumferential direction. Each of the left and right sipes of each pair extends from a width-directional center portion of the ground contact face of the block toward each way of the tire width direction so as to open its outer end to each side face of the block.
Abstract:
A pneumatic radial tire has a tread pattern having a pair of straight main grooves each having a width equal to 8-13 percent of a ground contact width W of the tire and extending in parallel on opposite sides of an equator of the tire, a plurality of lug grooves extending across shoulder regions formed on the outersides of the pair of main grooves from the pair of main grooves outwardly toward the ends of the ground contact surface of the tire to form in cooperation with the main grooves successive rows of blocks, and a plurality of V-shaped sub-grooves in the shoulder regions spaced at a predetermined pitch apart in the circumferential direction of the tire and extending divergently with respect to the direction of reverse rotation of the tire, wherein the ratio of a distance W1 between respective centers of the main grooves to the ground contact width W is in the range of 0.2.ltoreq.W1/W.ltoreq.0.4; an angle .alpha. of inclination of the lug grooves with respect to the circumferential direction of the tire as viewed from the reverse tire rotating direction is in the range of 90.degree.-130.degree.; and an angle .beta. defined by the V-shaped sub-grooves is in the range of 15.degree.-35.degree..
Abstract:
Provided is a pneumatic tire having further improved ice performance achieved by narrow grooves. The pneumatic tire of the present invention is provided, in a tread, with land sections formed by partitioning the tread by grooves, and each of the land sections is provide with narrow grooves in a ground contact surface of the land section. The angle of tilt of the narrow grooves relative to the tire's circumferential direction is set to be larger in end regions located at both sides of a center region in a tire's lateral direction in each of the land sections than in the center region.
Abstract:
Provided is a pneumatic tire having further improved ice performance achieved by narrow grooves. The pneumatic tire of the present invention is provided, in a tread, with land sections formed by partitioning the tread by grooves, and each of the land sections is provide with narrow grooves in a ground contact surface of the land section. The angle of tilt of the narrow grooves relative to the tire's circumferential direction is set to be larger in end regions located at both sides of a center region in a tire's lateral direction in each of the land sections than in the center region.