摘要:
A production method for a case-integrated bonded magnet includes: filling a tubular cavity with a magnet raw material that includes a rare-earth magnet powder and a thermosetting resin binder; heating the magnet raw material to cause the thermosetting resin softened or melted while compressively molding the magnet raw material to obtain a tubular compact; discharging the tubular compact from the tubular cavity while press-fitting the tubular compact into a metal tubular case having an inner peripheral surface coaxial with the tubular cavity; and heat-curing the tubular compact with the tubular case to cure the thermosetting resin. The tubular compact press-fitted into the tubular case is thermally cured thereby causing the tubular compact to transform to a tubular bonded magnet, which expands unexpectedly due to heat.
摘要:
A method for production of an anisotropic bonded magnet includes: aligning magnetic pole bodies which include an even number of permanent magnets arranged uniformly around an outer periphery of an annular cavity filled with magnetic raw material, aligning magnetic fields to cause rare-earth anisotropic magnet powder to be semi-radially aligned; compressively molding the semi-radially aligned magnet raw material to obtain an annular compact; discharging the compact from the annular cavity; demagnetizing causing the aligning magnetic pole bodies to relatively move only in circumferential direction with respect to the compact after the molding step thereby to apply demagnetization magnetic fields to the compact; The demagnetization magnetic fields are applied from the aligning magnetic pole bodies with opposite poles to those during the alignment step, and the demagnetization magnetic fields are in directions for cancelling the magnetization of the compact caused by the aligning magnetic fields.
摘要:
A production method for a case-integrated bonded magnet includes: filling a tubular cavity with a magnet raw material that includes a rare-earth magnet powder and a thermosetting resin binder; heating the magnet raw material to cause the thermosetting resin softened or melted while compressively molding the magnet raw material to obtain a tubular compact; discharging the tubular compact from the tubular cavity while press-fitting the tubular compact into a metal tubular case having an inner peripheral surface coaxial with the tubular cavity; and heat-curing the tubular compact with the tubular case to cure the thermosetting resin. The tubular compact press-fitted into the tubular case is thermally cured thereby causing the tubular compact to transform to a tubular bonded magnet, which expands unexpectedly due to heat.
摘要:
A method for production of an anisotropic bonded magnet includes: aligning magnetic pole bodies which include an even number of permanent magnets arranged uniformly around an outer periphery of an annular cavity filled with magnetic raw material, aligning magnetic fields to cause rare-earth anisotropic magnet powder to be semi-radially aligned; compressively molding the semi-radially aligned magnet raw material to obtain an annular compact; discharging the compact from the annular cavity; demagnetizing causing the aligning magnetic pole bodies to relatively move only in circumferential direction with respect to the compact after the molding step thereby to apply demagnetization magnetic fields to the compact. The demagnetization magnetic fields are applied from the aligning magnetic pole bodies with opposite poles to those during the alignment step, and the demagnetization magnetic fields are in directions for cancelling the magnetization of the compact caused by the aligning magnetic fields.
摘要:
[Object] To improve resistance of a motor device against an organic solvent and to suppress degradation in performance of the motor device with time.[Solving Means] In a motor device, an excitation magnet is formed using a hollow-cylinder shaped anisotropic bonded magnet 13. This bonded magnet 13 is press-fitted in a housing 12 and is held. The bonded magnet 13 is formed of a hollow-cylinder shaped anisotropic rare earth bonded magnet which is obtained by compounding an anisotropic rare earth magnet powder with a phenol-novolac type epoxy resin, followed by molding. The anisotropic rare earth bonded magnet 13 is press-fitted along an inner peripheral portion of the housing 12, and on an exposed surface layer of the anisotropic rare earth bonded magnet press-fitted in the housing, a coating layer is formed by an infiltration treatment using a polyamide-imide-based resin.
摘要:
To improve resistance of a motor device against an organic solvent and to suppress degradation in performance of the motor device with time.In a motor device, an excitation magnet is formed using a hollow-cylinder shaped anisotropic bonded magnet 13. This bonded magnet 13 is press-fitted in a housing 12 and is held. The bonded magnet 13 is formed of a hollow-cylinder shaped anisotropic rare earth bonded magnet which is obtained by compounding an anisotropic rare earth magnet powder with a phenol-novolac type epoxy resin, followed by molding. The anisotropic rare earth bonded magnet 13 is press-fitted along an inner peripheral portion of the housing 12, and on an exposed surface layer of the anisotropic rare earth bonded magnet press-fitted in the housing, a coating layer is formed by an infiltration treatment using a polyamide-imide-based resin.
摘要:
An anisotropic bonded magnet molded in a ring shape to be used to excite a brush-equipped direct current motor. A magnetic flux density distribution in each of magnetic pole sections of the ring shape forms an asymmetric distribution which includes a magnetic flux density reduced portion wherein the absolute value rises from a neutral axis opposite to a rotation direction of an armature with a delay with respect to a rotation direction of the armature, and in which the absolute value falls more rapidly than a rise thereof in the rotation direction of the armature with respect to a neutral axis in the rotation direction of the armature.
摘要:
The rectifying characteristic of a brush-equipped direct current machine is improved, and the life of the machine is extended.As illustrated in FIG. 2, a magnetic flux density reduced portion in which the magnetic flux density is reduced is formed in a magnetic pole section of an anisotropic bonded magnet. The position in the magnetic pole section formed with the magnetic flux density reduced portion is formed at the position at which, when a rectifier coil moves in a rectification section, the absolute value of the density of a magnetic flux penetrating the rectifier coil is increased due to the influence of the magnetic flux density reduced portion. Thus, an inverse voltage can be induced in the rectifier coil in the direction of inversion current during a rectification period. It is therefore possible to facilitate the inversion of the current, and to compensate for inadequate rectification and improve the rectifying characteristic. Accordingly, the occurrence of sparks at the end of the rectification can be prevented.
摘要:
In a method of fabricating an R--Fe--B based alloy magnetic powder excellent in magnetic anisotropy, and an R--Fe--B--Co based alloy magnetic powder excellent in magnetic anisotropy and temperature characteristic an R--Fe--B based alloy is subjected to hydrogenation under pressurized hydrogen gas and to dehydrogenation. Excellent magnetic properties and stable with less variation in range can be attained in an industrial fabrication by using a plurality of divided reaction tubes. Moreover, the R--Fe--B--Co based alloy magnetic powder is constituted of an aggregate structure including, as a main phase, a recrystallized structure of an extremely fine R.sub.2 Fe.sub.14 B type phase with an average grain size of 0.05 to 3 .mu.m, and has excellent magnetic anisotropy and temperature characteristic. Additionally, a resin bonded magnet excellent in magnetic properties and temperature characteristic is fabricated by injection molding or compression molding using the above R--Fe--B--Co based alloy magnetic powder.
摘要:
The present invention relates to a method for producing a rare earth anisotropic bond magnet containing a hollow cylindrically shaped magnetic molded body having, at the hollow cylindrically shaped side face thereof, at least 4 or more orientation portions that are oriented with semi-radial distribution by compression molding of a magnetic material after thermally orienting step, wherein intermediate aligning magnetic fields applied in the thermally orienting step to between adjacent cavities are the mostly same in their magnetic directions. A plurality of rare earth anisotropic bond magnets can be efficiently produced at one time.