摘要:
A hollow cylindrically shaped anisotropic bonded magnet for use in a 4-pole motor, is formed by molding anisotropic rare-earth magnet powder with resin. The alignment distribution of the anisotropic rare-earth magnet powder in a cross section perpendicular to the axis of the anisotropic bonded magnet is in the normalized direction of the cylindrical side of the hollow cylindrical shape in the main region of a polar period, and in a transition region in which the direction of the magnetic pole changes, steadily points towards a direction tangential to the periphery of the cylindrical side at points closer to the neutral point of the magnetic pole, and becomes a direction tangential to the periphery of the cylindrical side at that neutral point, and steadily points toward the normalized direction of the cylindrical side at points farther away from the neutral point.
摘要:
[Problem to be Solved]To realize an anisotropic bonded magnet that reduces cogging torque without lowering output torque. [Means for Solving the Problem]The present invention provides a hollow cylindrically shaped anisotropic bonded magnet for use in a 4-pole motor, formed by molding anisotropic rare-earth magnet powder with resin. The alignment distribution of the anisotropic rare-earth magnet powder in a cross section perpendicular to the axis of the anisotropic bonded magnet is in the normalized direction of the cylindrical side of the hollow cylindrical shape in the main region of a polar period, and in a transition region in which the direction of the magnetic pole changes, steadily points towards a direction tangential to the periphery of the cylindrical side at points closer to the neutral point of the magnetic pole, and becomes a direction tangential to the periphery of the cylindrical side at that neutral point, and steadily points toward the normalized direction of the cylindrical side at points farther away from the neutral point.
摘要:
To realize an anisotropic bonded magnet that reduces cogging torque without lowering output torque.The present invention provides a hollow cylindrically shaped anisotropic bonded magnet for use in a 4-pole motor, formed by molding anisotropic rare-earth magnet powder with resin. The alignment distribution of the anisotropic rare-earth magnet powder in a cross section perpendicular to the axis of the anisotropic bonded magnet is in the normalized direction of the cylindrical side of the hollow cylindrical shape in the main region of a polar period, and in a transition region in which the direction of the magnetic pole changes, steadily points towards a direction tangential to the periphery of the cylindrical side at points closer to the neutral point of the magnetic pole, and becomes a direction tangential to the periphery of the cylindrical side at that neutral point, and steadily points toward the normalized direction of the cylindrical side at points farther away from the neutral point.
摘要:
The present invention provides miniaturization of brushless motors and brush motors used in electric devices, a ring magnet which simultaneously achieves both high torque and a reduction in cogging torque, a ring magnet with yoke, and a brushless motor. The thin hybrid magnetized ring magnet of the present invention is structured of, in a ring magnet comprised of a plurality of magnetic poles, a radially magnetized main pole and an interface for which the interface of the adjoining main pole is polar anisotropic. When the thin hybrid magnetized ring magnet structured in this manner is applied to a brushless motor, in the case of radial magnetizing, the abrupt change in magnetic flux of the interface between the magnetic poles becomes smooth and cogging torque is greatly reduced due to polar anisotropic magnetization of the interface. At the same time, by polar anisotropically magnetizing the interface between the magnetic poles, magnetic flux is concentrated on the radially magnetized main pole, and in comparison to only radial magnetization, maximum surface magnetic flux improves and it is possible to attain high torque.
摘要:
The present invention provides miniaturization of brushless motors and brush motors used in electric devices, a ring magnet which simultaneously achieves both high torque and a reduction in cogging torque, a ring magnet with yoke, and a brushless motor. The thin hybrid magnetized ring magnet of the present invention is structured of, in a ring magnet comprised of a plurality of magnetic poles, a radially magnetized main pole and an interface for which the interface of the adjoining main pole is polar anisotropic. When the thin hybrid magnetized ring magnet structured in this manner is applied to a brushless motor, in the case of radial magnetizing, the abrupt change in magnetic flux of the interface between the magnetic poles becomes smooth and cogging torque is greatly reduced due to polar anisotropic magnetization of the interface. At the same time, by polar anisotropically magnetizing the interface between the magnetic poles, magnetic flux is concentrated on the radially magnetized main pole, and in comparison to only radial magnetization, maximum surface magnetic flux improves and it is possible to attain high torque.
摘要:
A hollow cylindrically shaped anisotropic bonded magnet for use in a 4-pole motor, is formed by molding anisotropic rare-earth magnet powder with resin. The alignment distribution of the anisotropic rare-earth magnet powder in a cross section perpendicular to the axis of the anisotropic bonded magnet is in the normalized direction of the cylindrical side of the hollow cylindrical shape in the main region of a polar period, and in a transition region in which the direction of the magnetic pole changes, steadily points towards a direction tangential to the periphery of the cylindrical side at points closer to the neutral point of the magnetic pole, and becomes a direction tangential to the periphery of the cylindrical side at that neutral point, and steadily points toward the normalized direction of the cylindrical side at points farther away from the neutral point.
摘要:
The present invention relates to a method for producing a rare earth anisotropic bond magnet containing a hollow cylindrically shaped magnetic molded body having, at the hollow cylindrically shaped side face thereof, at least 4 or more orientation portions that are oriented with semi-radial distribution by compression molding of a magnetic material after thermally orienting step, wherein intermediate aligning magnetic fields applied in the thermally orienting step to between adjacent cavities are the mostly same in their magnetic directions. A plurality of rare earth anisotropic bond magnets can be efficiently produced at one time.
摘要:
A bonded rare earth magnet which exhibits excellent magnetic properties for a long time is provided by improving oxidation resistance at high temperatures. The magnet has a magnet body (10) comprising magnet powder (11) containing a rare earth element and a resin part (12) binding the magnet powder (11) and having a structure in which the magnet powder (11) is embedded in the resin part (12); and an amorphous carbon film (91) formed directly on a surface of the magnet body (10), the resin part (12) comprising a binder resin part (14) binding the magnet powder (11); and a resin layer (13) serving as a surface layer of the magnet body (10) and covering the magnet powder (11). The binder resin part and the resin layer are formed of the same resin material and are continuous and integral with each other.
摘要:
[Object] To improve resistance of a motor device against an organic solvent and to suppress degradation in performance of the motor device with time.[Solving Means] In a motor device, an excitation magnet is formed using a hollow-cylinder shaped anisotropic bonded magnet 13. This bonded magnet 13 is press-fitted in a housing 12 and is held. The bonded magnet 13 is formed of a hollow-cylinder shaped anisotropic rare earth bonded magnet which is obtained by compounding an anisotropic rare earth magnet powder with a phenol-novolac type epoxy resin, followed by molding. The anisotropic rare earth bonded magnet 13 is press-fitted along an inner peripheral portion of the housing 12, and on an exposed surface layer of the anisotropic rare earth bonded magnet press-fitted in the housing, a coating layer is formed by an infiltration treatment using a polyamide-imide-based resin.
摘要:
A production method for a case-integrated bonded magnet includes: filling a tubular cavity with a magnet raw material that includes a rare-earth magnet powder and a thermosetting resin binder; heating the magnet raw material to cause the thermosetting resin softened or melted while compressively molding the magnet raw material to obtain a tubular compact; discharging the tubular compact from the tubular cavity while press-fitting the tubular compact into a metal tubular case having an inner peripheral surface coaxial with the tubular cavity; and heat-curing the tubular compact with the tubular case to cure the thermosetting resin. The tubular compact press-fitted into the tubular case is thermally cured thereby causing the tubular compact to transform to a tubular bonded magnet, which expands unexpectedly due to heat.