摘要:
A width and a thickness of a bit line are represented as W1 and T1, respectively, a thickness of a digit line is represented as T2, and a distance from a center of the digit line in a thickness direction to a center of a free layer of an MTJ element in the thickness direction is represented as L1. A width of the digit line is represented as W2, and a distance from a center of the bit line in the thickness direction to the center of the free layer of the MTJ element in the thickness direction is represented as L2. The distances L1 and L2 and the cross-sectional areas S1 and S2 are set in such a manner that when L1/L2≧1, a relation of (⅓)·(L1/L2)≦S2/S1≦1 is satisfied and when L1/L2≦1, a relation of 1≦S2/S1≦3(L1/L2) is satisfied.
摘要:
A width and a thickness of a bit line are represented as W1 and T1, respectively, a thickness of a digit line is represented as T2, and a distance from a center of the digit line in a thickness direction to a center of a free layer of an MTJ element in the thickness direction is represented as L1. A width of the digit line is represented as W2, and a distance from a center of the bit line in the thickness direction to the center of the free layer of the MTJ element in the thickness direction is represented as L2. The distances L1 and L2 and the cross-sectional areas S1 and S2 are set in such a manner that when L1/L2≧1, a relation of (⅓)·(L1/L2 )≦S2/S1≦1 is satisfied and when L1/L2≦1, a relation of 1≦S2/S1≦3(L1 /L2) is satisfied.
摘要:
A width and a thickness of a bit line are represented as W1 and T1, respectively, a thickness of a digit line is represented as T2, and a distance from a center of the digit line in a thickness direction to a center of a free layer of an MTJ element in the thickness direction is represented as L1. A width of the digit line is represented as W2, and a distance from a center of the bit line in the thickness direction to the center of the free layer of the MTJ element in the thickness direction is represented as L2. The distances L1 and L2 and the cross-sectional areas S1 and S2 are set in such a manner that when L1/L2≧1, a relation of (1/3)·(L1/L2)≦S2/S1≦1 is satisfied and when L1/L2≦1, a relation of 1≦S2/S1≦3(L1/L2) is satisfied.
摘要:
A semiconductor device and a manufacturing method thereof which is suited for forming both a transistor for a memory cell and a transistor for a high voltage circuit part on one semiconductor substrate, and moreover, has little deterioration of an electric characteristic in the structure that a sidewall insulating film in a shared contact plug part is removed is provided. An active layer is formed by performing an additional impurity injection on a part where a sidewall insulating film is removed in a forming portion of a shared contact plug. An insulating film is laminated in a high voltage circuit part and a sidewall insulating film of wide width is formed. According to this, a forming width of a sidewall insulating film can be made small in a MOS transistor for a memory cell part, and a forming width of a sidewall insulating film can be made large in a MOS transistor for a high voltage circuit part. Thereupon, in the high voltage circuit part, a source/drain active layer can be formed in the position more distant from a gate electrode.
摘要:
A width and a thickness of a bit line are represented as W1 and T1, respectively, a thickness of a digit line is represented as T2, and a distance from a center of the digit line in a thickness direction to a center of a free layer of an MTJ element in the thickness direction is represented as L1. A width of the digit line is represented as W2, and a distance from a center of the bit line in the thickness direction to the center of the free layer of the MTJ element in the thickness direction is represented as L2. The distances L1 and L2 and the cross-sectional areas S1 and S2 are set in such a manner that when L1/L2≧1, a relation of (⅓)·(L1/L2)≦S2/S1≦1 is satisfied and when L1/L2≦1, a relation of 1≦S2/S1≦3(L1/L2) is satisfied.
摘要翻译:位线的宽度和厚度分别表示为W 1和T 1,数字线的厚度表示为T 2,并且从数字线的中心到厚度方向的中心的距离 在厚度方向上的MTJ元件的自由层表示为L 1。 数字线的宽度表示为W 2,并且从厚度方向的位线的中心到厚度方向上的MTJ元件的自由层的中心的距离表示为L 2。 距离L 1和L 2以及横截面积S 1和S 2被设定为当L 1 / L 2> = 1时,关于(1/3)(L 1 / L 2 )满足<= S 2 / S 1 <= 1,并且当L 1 / L 2 <= 1时,满足1 <= S 2 / S 1 <= 3(L 1 / L 2)的关系。
摘要:
A width and a thickness of a bit line are represented as W1 and T1, respectively, a thickness of a digit line is represented as T2, and a distance from a center of the digit line in a thickness direction to a center of a free layer of an MTJ element in the thickness direction is represented as L1. A width of the digit line is represented as W2, and a distance from a center of the bit line in the thickness direction to the center of the free layer of the MTJ element in the thickness direction is represented as L2. The distances L1 and L2 and the cross-sectional areas S1 and S2 are set in such a manner that when L1/L2≧1, a relation of (⅓)·(L1/L2)≦S2/S1≦1 is satisfied and when L1/L2≦1, a relation of 1≦S2/S1≦3(L1/L2) is satisfied.
摘要翻译:位线的宽度和厚度分别表示为W 1和T 1,数字线的厚度表示为T 2,并且从数字线的中心到厚度方向的中心的距离 在厚度方向上的MTJ元件的自由层表示为L 1。 数字线的宽度表示为W 2,并且从厚度方向的位线的中心到厚度方向上的MTJ元件的自由层的中心的距离表示为L 2。 距离L 1和L 2以及横截面积S 1和S 2被设定为当L 1 / L 2> = 1时,关于(1/3)(L 1 / L 2 )满足<= S 2 / S 1 <= 1,并且当L 1 / L 2 <= 1时,满足1 <= S 2 / S 1 <= 3(L 1 / L 2)的关系。
摘要:
A width and a thickness of a bit line are represented as W1 and T1, respectively, a thickness of a digit line is represented as T2, and a distance from a center of the digit line in a thickness direction to a center of a free layer of an MTJ element in the thickness direction is represented as L1. A width of the digit line is represented as W2, and a distance from a center of the bit line in the thickness direction to the center of the free layer of the MTJ element in the thickness direction is represented as L2. The distances L1 and L2 and the cross-sectional areas S1 and S2 are set in such a manner that when L1/L2≧1, a relation of (⅓)·(L1/L2)≦S2/S1≦1 is satisfied and when L1/L2≦1, a relation of 1≦S2/S1≦3(L1/L2) is satisfied.
摘要翻译:位线的宽度和厚度分别表示为W 1和T 1,数字线的厚度表示为T 2,并且从数字线的中心到厚度方向的中心的距离 在厚度方向上的MTJ元件的自由层表示为L 1。 数字线的宽度表示为W 2,并且从厚度方向的位线的中心到厚度方向上的MTJ元件的自由层的中心的距离表示为L 2。 距离L 1和L 2以及横截面积S 1和S 2被设定为当L 1 / L 2> = 1时,关于(1/3)(L 1 / L 2 )满足<= S 2 / S 1 <= 1,并且当L 1 / L 2 <= 1时,满足1 <= S 2 / S 1 <= 3(L 1 / L 2)的关系。
摘要:
A nonvolatile semiconductor memory device includes an n-type region which is in contact with n+ drain diffusion region at a surface of p-type silicon substrate and covers the periphery thereof. The device also includes a p-type impurity region which is in contact with n-type region and covers the periphery thereof. The n+ drain diffusion region, n-type region and p+ impurity region extend to region located immediately under the floating gate electrode. Thereby, the nonvolatile semiconductor memory device has a structure which can promote injection of high energy electrons along a gate electrode direction.
摘要翻译:非易失性半导体存储器件包括在p型硅衬底的表面上与n +漏极扩散区域接触并覆盖其周围的n型区域。 该器件还包括与n型区域接触并覆盖其周边的p型杂质区域。 n +漏极扩散区域,n型区域和p +杂质区域延伸到位于浮置栅电极正下方的区域。 由此,非易失性半导体存储器件具有能够沿着栅电极方向注入高能电子的结构。
摘要:
In a semiconductor device and a method of manufacturing the same according to the present invention, a trade-off relationship between threshold values and a diffusion layer leakage is eliminated and it is not necessary to form gate oxide films at more than one stages. Since doses of nitrogen are different from each other between gate electrodes (4A to 4C) of N-channel type MOS transistors (T41 to T43), concentrations of nitrogen in the nitrogen-introduced regions (N1 to N3) are accordingly different from each other. Concentrations of nitrogen in the gate electrodes are progressively lower in the order of expected higher threshold values.
摘要:
With a semiconductor device and according to a manufacturing method of the invention, a trade-off relationship between a threshold value and a diffusion layer leak is eliminated, and it is not necessary to form a gate oxide film at a plurality of steps. Gate electrodes (4A, 4B and 4C) respectively comprise a polysilicon layer (M1) and a WSi layer (L1), the polysilicon layer (M1) and a WSi layer (L2), the polysilicon layer (M1) and a WSi layer (L3), which are respectively stacked in this order on a gate oxide film (3). Channel dope layers (103A, 103B and 103C) are formed within a well layer (101) respectively under the gate electrodes (4A, 4B and 4C).