摘要:
The subject invention produces a water-absorbent resin by carrying out stationary polymerization of an ethylenically-unsaturated monomer containing acrylic acid and/or acrylate; cutting the resulting hydrous gelatinous polymer; and drying the hydrous gelatinous polymer which mainly contains angular particles having 6 smooth planes. The resulting water-absorbent resin particles are not aggregate, and can be efficiently dried. By coating at least a part of the surface of each of the particles with an adhesion block agent before, after, and/or at the time of cutting process, the adhesion preventing effect further increases.
摘要:
A production method of a water-absorbent resin includes the steps of: obtaining a hydrogel by supplying monomer liquid to a reaction device so that the monomer liquid is polymerized; and detaching the hydrogel from the reaction device, wherein the reaction device's surface in contact with the monomer liquid at a position where polymerization occurs is made of a fluororesin having a melt viscosity of less than 1×108 poise at 380° C. On this account, it is possible to obtain a water-absorbent resin having less amounts of an extractable content with high productivity and it is possible to carry out continuous production for an extended period of time.
摘要:
A production method of a water-absorbent resin includes the steps of: obtaining a hydrogel by supplying monomer liquid to a reaction device so that the monomer liquid is polymerized; and detaching the hydrogel from the reaction device, wherein the reaction device's surface in contact with the monomer liquid at a position where polymerization occurs is made of a fluororesin having a melt viscosity of less than 1×108 poise at 380° C. On this account, it is possible to obtain a water-absorbent resin having less amounts of an extractable content with high productivity and it is possible to carry out continuous production for an extended period of time.
摘要:
A method for the production of an aqueous dispersion by the dispersion of an inorganic pigment such as calcium carbonate and aluminum hydroxide in an aqueous medium, which method comprises incorporating in said inorganic pigment as a dispersant a carboxyl group-containing water-soluble polymer possessing a number average molecular weight in the range of 2,000 to 80,000 and/or a water-soluble condensed phospate and a water-soluble anionic modified polyvinyul alcohol possessing a polymerization degree in the range of 30 to 700, a saponification degree in the range of 30 to 100 mol %, and an anionic modification degree in the range of 0.5 to 20 mol %.
摘要:
A method for the production of an aqueous dispersion by the dispersion of an inorganic pigment such as calcium carbonate and aluminum hydroxide in an aqueous medium, which method comprises incorporating in said inorganic pigment as a dispersant a carboxyl group-containing water-soluble polymer possessing a number average molecular weight in the range of 2,000 to 80,000 and/or a water-soluble condensed phosphate and a water-soluble anionic modified polyvinyl alcohol possessing a polymerization degree in the range of 30 to 700, a saponification degree in the range of 30 to 100 mol %, and an anionic modification degree in the range of 0.5 to 20 mol %.
摘要:
A method for surface crosslinking water-absorbing resin of the present invention includes a step (1) of obtaining a wet mixture, a step (2) of obtaining a dried particulate composition, and a step (3) of carrying out a surface crosslinking reaction. With this, since a processing time of each step becomes short, it is possible to mass produce the water-absorbing resin having excellent physical properties. Moreover, a method for manufacturing the water-absorbing resin of the present invention includes a modifying step and a cooling step. The modifying step and/or the cooling step are/is carried out by using stirring means including a rotation axis having a plurality of stirring boards, and the stirring means includes the stirring board having a specific thickness and/or a scraping blade having a specific shape. With this, it is possible to suppress the generation of the fine powder in the modifying step and/or the cooling step.
摘要:
A particulate water absorbing agent of the present invention includes a water absorbent resin, having a cross-linking structure, whose surface has been cross-linked by adding a surface treatment agent, wherein: (i) a mass average particle diameter (D50) ranges from 200 to 600 μm and 95 to 100 wt % of a particulate water absorbing agent whose particle diameter ranges from less than 850 μm to not less than 150 μm is contained with respect to 100 wt % of whole the particulate water absorbing agent, and (ii) a logarithmic standard deviation (σζ) of particle size distribution ranges from 0.25 to 0.45, and (iii) a compressibility rate defined by a following equation ranges from 0 to 18%, and (iv) a surface tension of a supernatant liquid obtained in 4 minutes after dispersing 0.5 g of the particulate water absorbing agent in 50 ml of physiological saline whose temperature is 20° C. is 55 mN/m or more, the compressibility rate (%)=(P−A)/P×100 where P represents a tapped bulk density of the particulate water absorbing agent and A represents a loose bulk density of the particulate water absorbing agent.
摘要:
A particulate water absorbing agent of the present invention includes a water absorbent resin, having a cross-linking structure, whose surface has been cross-linked by adding a surface treatment agent, wherein: (i) a mass average particle diameter (D50) ranges from 200 to 600 μm and 95 to 100 wt % of a particulate water absorbing agent whose particle diameter ranges from less than 850 μm to not less than 150 μm is contained with respect to 100 wt % of whole the particulate water absorbing agent, and (ii) a logarithmic standard deviation (σζ) of particle size distribution ranges from 0.25 to 0.45, and (iii) a compressibility rate defined by a following equation ranges from 0 to 18%, and (iv) a surface tension of a supernatant liquid obtained in 4 minutes after dispersing 0.5 g of the particulate water absorbing agent in 50 ml of physiological saline whose temperature is 20° C. is 55 mN/m or more, the compressibility rate (%)=(P−A)/P×100 where P represents a tapped bulk density of the particulate water absorbing agent and A represents a loose bulk density of the particulate water absorbing agent.
摘要:
The present invention provides a production process to obtain a hydrophilic polymer, having a low residual monomer content, with good productivity while keeping the properties of a hydrogel polymer resultant from polymerization. In a drying process for a hydrogel polymer, the hydrogel polymer is dried under normal pressure at a material temperature of not higher than 90° C. until the water content of the hydrogel polymer reduces to 15˜40 weight %, and then the hydrogel polymer is kept for not shorter than 10 minutes either in a state where the change of the water content of the hydrogel polymer is within 5 weight % and where the material temperature is in the range of 70˜120° C. or in a state where the water content of the hydrogel polymer is in the range of 15˜40 weight % and where the material temperature is in the range of 70˜120° C., and then the hydrogel polymer is finish-dried.
摘要:
An object of the present invention is to provide a water absorbent having excellent gel properties and showing excellent properties when used in a water-absorbing material of a sanitary/hygienic material such as paper diaper. Moreover, another object of the present invention is to provide a water absorbent which is safe and excellent in liquid permeability, and in which an amount of liquid permeability improver for improving the liquid permeability is reduced. The water absorbent is made from a water-absorbing resin prepared by a specific polymerization method and having a high degree of cross-linking, a high liquid holding property and a high gel strength (its swelling pressure of gel layer of is 35 kdyne/cm2 or more). This water absorbent is further processed to have a particular particle size distribution (95 wt % or more of its particles are less than 850ƒÊm but not less than 106ƒÊm, and logarithmic standard deviation (ƒĐƒÄ) is in a range of 0.25 to 0.45) and then surface cross-linked. After that, a liquid permeability improver is added therein.