摘要:
Display device includes: a power supplying unit which outputs at least a high-side or low-side output potential; an organic EL display unit which includes pixels and receives power supply from the power supplying unit; two or more detecting lines for transmitting a high-side or low-side applied potential applied to two or more pixels; a relay unit which outputs the high-side or low-side applied potentials transmitted by the detecting lines, to output lines fewer in number than the detecting lines; and a regulating unit which regulates at least the high-side or low-side output potential to be outputted by the power supplying unit, such that any one of potential difference between a reference potential and the high-side applied potential from the relay unit, potential difference between the reference potential and the low-side applied potential, and potential difference between the high-side applied potential and the low-side applied potential reaches a predetermined potential difference.
摘要:
A method of manufacturing an organic electroluminescence display includes preparing a substrate including pixels. The pixels each include a drive transistor and a capacitor. The capacitor of a subject pixel is caused to hold a voltage which corresponds to a threshold voltage of the drive transistor, and the voltage is read. A first signal voltage is obtained by adding a first correction parameter of the subject pixel to a second signal voltage corresponding to a single gradation level belonging to an intermediate gradation region or a high gradation region of representative voltage-luminance characteristics. The first signal voltage is applied to the driver of the subject pixel, and a luminance emitted by the subject pixel is measured. A second correction parameter with which the luminance emitted by the subject pixel becomes a standard luminance is calculated.
摘要:
An organic electroluminescence display device includes a display panel including pixels. The pixels each include a light-emitter, driver and capacitor. A storage is configured to store a correction parameter for each of the pixels for correcting, in accordance with characteristics of each of the pixels, an image signal input from an external source. A controller is configured to, for each pixel of the pixels, obtain a corrected signal voltage by reading the correction parameter corresponding to the pixel from the storage and multiplying the image signal corresponding to the pixel by the correction parameter corresponding to the pixel. The storage is configured to store a gain and not an offset as the correction parameter.
摘要:
An exposure apparatus for an image forming apparatus is provided, the exposure apparatus being downsized by reducing the substrate on which a row of light emitting elements are provided in size in the sub-scanning direction. The exposure apparatus comprises a glass substrate, a row of light emitting elements constituted by multiple organic EL elements on the glass substrate, and a drive control unit for receiving from outside the glass substrate control signals for driving the organic EL elements and controlling the drive of the light emitting elements based on the control signals, wherein the drive control unit is at least partly placed on the extended line of the row of light emitting elements.
摘要:
In an exposure device having tiny light emitting elements aligned, a space required for drive circuits and wires is secured without affecting the size or alignment of the light emitting elements for arrangement and wiring of the drive circuits. In this exposure device, the drive circuits are separately arranged outside the column formed by the multiple organic EL elements, and, the length of the region occupied by the circuit exceeds one pitch in the alignment of the organic EL elements, and, the multiple drive circuits are arranged along the column.
摘要:
A display device includes a luminescence element. A power line provides the luminescence element with an electric current. A capacitor accumulates a driving voltage corresponding to a data voltage. A driver flows the electric current according to the driving voltage accumulated in the capacitor through the luminescence element via the power line. A controller is configured to set a reverse bias voltage and an application time period according to an amount of luminescence produced by the luminescence element, and to determine luminance levels in luminescence periods. The controller sets the reverse bias voltage and the application time period according to a peak luminance of the luminance levels when a difference between the peak luminance and an average luminance of the luminance levels exceeds a predetermined threshold, and applies the reverse bias voltage for the application time period within an OFF period of the data voltage for removing an electric charge accumulated in the luminescence element. The OFF period is within one of the luminescence periods.
摘要:
A display device is provided which includes a luminescence element, a data line, and a switch connected between an electrode of the luminescence element and the data line. A voltage generation circuit supplies a pre-charge voltage to the data line. A current generation circuit supplies an inspection current to the electrode of the luminescence element plural times through the data line and the switch. A voltage detection circuit detects, the plural times, voltage values of the electrode supplied with the inspection current. When a difference between the voltage values is at least a predetermined value, the voltage generation circuit supplies the data line with an updated voltage that is higher than the pre-charge voltage.
摘要:
To provide an exposure device and an image forming apparatus using the same, in which the exposure device can detect light intensity with improved reliability and thereby controls the light intensity with high precision, the exposure device includes an EL (electro-luminescence) element having a first electrode (an anode), a second electrode (a cathode), and a light emitting layer disposed between the first and second electrodes, thereby forming a light emitting unit, and a light detecting element detecting light emitted from the EL element, in which the EL element and the light detecting element are stacked onto each other. The light detecting element is provided at an inner side of a principal surface of the electrode (the anode) which is disposed closer to the light detecting element than the other electrode. A light emitting area of the EL element is provided at an inner side of a principal surface of the light detecting element.
摘要:
A display device includes an organic EL element and a capacitor. A driving transistor is connected to an anode of the organic EL element and passes a current to the organic EL element. The current corresponds to a voltage held in the capacitor. A first switch is between the capacitor and a data line, and the data line supplies the voltage to the capacitor. A voltage detector is connected to the data line for detecting an anode voltage applied to the organic EL element. A second switch is between the anode and the data line. A controller turns on the first switch, causes the organic EL element to emit light, and causes the voltage detector to detect the anode voltage by turning off the first switch and turning on the second switch while the organic EL element is emitting light.
摘要:
An insulator (12), which is provided between a lower electrode (11) by patterning a substrate and a counter electrode (15), defines a light emitting area by covering on ends of the lower electrode (11). The light emitting area (13) has a shape of which edges in a first direction of the substrate are defined by at least the insulator (12) and other edges in a second direction on the substrate different from the first direction are defined by one of the lower electrode (11) and the counter electrode (15). A plurality of the light emitting elements is placed independent electrically in the second direction on the substrate, whereby a light emitting array and an exposure apparatus is formed.