摘要:
A cathode active material for a lithium secondary cell used in a cellular phone is disclosed. The cathode active material for the lithium secondary cell and the method the same having a high capacity and a long lifetime, different from LiCoO2 and LiMn2O4, Li(Ni, Co)O2, and V-system oxide that has been researched as the active material for substituting LiCoO2 are provided. The cathode active material for the lithium secondary cell in the next formula 1 is obtained by heating or chemically treating diadochite [Fe2(PO4)(SO4)(OH).6H2O] that is the mineral containing PO43−, SO42−, and OH−. LiaFebMc(PO4)x(SO4)y(OH)z (1) In the formula, M is at least one element selected from a radical consisting of Mg, Ti, Cr, Mn, Co, Ni, Cu, Zn, Al, and Si, with 0≦a, c≦0.5, 1≦b≦2, 0.5≦x, y, z≦1.5.
摘要:
Provided are a composite polymer electrolyte for a lithium secondary battery in which a composite polymer matrix multi-layer structure composed of a plurality of polymer matrices with different pore sizes is impregnated with an electrolyte solution, and a method of manufacturing the same. Among the polymer matrices, a microporous polymer matrix with a smaller pore size contains a lithium cationic single-ion conducting inorganic filler, thereby enhancing ionic conductivity, the distribution uniformity of the impregnated electrolyte solution, and maintenance characteristics. The microporous polymer matrix containing the lithium cationic single-ion conducting inorganic filler is coated on a surface of a porous polymer matrix to form the composite polymer matrix multi-layer structure, which is then impregnated with the electrolyte solution, to manufacture the composite polymer electrolyte. The composite polymer electrolyte is used in a unit battery. The composite polymer matrix structure can increase mechanical properties. The introduction of the lithium cationic single-ion conducting inorganic filler can provide excellent ionic conductivity and high rate discharge characteristics.
摘要:
Provided is a method of producing a nanoparticle-filled phase inversion polymer electrolyte. The method includes mixing a nanoparticle inorganic filler and a polymer with a solvent to obtain a slurry; casting the obtained slurry to form a membrane; obtaining an inorganic nanoparticle-filled porous polymer membrane by developing internal pores in the cast membrane using a phase inversion method; and impregnating the inorganic nanoparticle-filled porous polymer membrane with an electrolytic solution. The polymer electrolyte produced using the method can be used in a small lithium secondary battery having a high capacity, thereby providing an excellent battery property.
摘要:
Provided are a composite polymer electrolyte for a lithium secondary battery in which a composite polymer matrix multi-layer structure composed of a plurality of polymer matrices with different pore sizes is impregnated with an electrolyte solution, and a method of manufacturing the same. Among the polymer matrices, a microporous polymer matrix with a smaller pore size contains a lithium cationic single-ion conducting inorganic filler, thereby enhancing ionic conductivity, the distribution uniformity of the impregnated electrolyte solution, and maintenance characteristics. The microporous polymer matrix containing the lithium cationic single-ion conducting inorganic filler is coated on a surface of a porous polymer matrix to form the composite polymer matrix multi-layer structure, which is then impregnated with the electrolyte solution, to manufacture the composite polymer electrolyte. The composite polymer electrolyte is used in a unit battery. The composite polymer matrix structure can increase mechanical properties. The introduction of the lithium cationic single-ion conducting inorganic filler can provide excellent ionic conductivity and high rate discharge characteristics.
摘要:
Provided are a composite polymer electrolyte for a lithium secondary battery that includes a composite polymer matrix structure having a single ion conductor-containing polymer matrix to enhance ionic conductivity and a method of manufacturing the same. The composite polymer electrolyte includes a first polymer matrix made of a first porous polymer with a first pore size; a second polymer matrix made of a single ion conductor, an inorganic material, and a second porous polymer with a second pore size smaller than the first pore size. The second polymer matrix is coated on a surface of the first polymer matrix. The composite polymer matrix structure can increase mechanical properties. The single ion conductor-containing porous polymer matrix of a submicro-scale can enhance ionic conductivity and the charge/discharge cycle stability.
摘要:
There are provided an anode for a lithium metal polymer secondary battery comprising an anodic current collector having a surface on which a plurality of recesses having a predetermined shape are formed and a method of preparing the same. The plurality of recesses are formed on a surface of the anodic current collector using a physical method or a chemical method. In a lithium metal polymer secondary battery employing the anode, oxidation/reduction of lithium and the formation of dendrite occur only in the recesses formed by surface patterning of the anodic current collector. Thus, expanding and shrinking of a battery due to a change in the thickness of the lithium anode can be prevented and cycling stability and the lifespan of a battery can be improved.
摘要:
A method of manufacturing a flexible-film primary battery includes forming a first conductive carbon layer directly on a surface-treated inner surface of a first pouch film to form a positive electrode collector, and forming a positive electrode layer on the first conductive carbon layer to form a positive electrode plate. A second conductive carbon layer is formed directly on a surface-treated inner surface of a second pouch film to form a negative electrode collector, and a negative electrode layer is formed on the second conductive carbon layer to form a negative electrode plate. An adhesion/post-injection polymer electrolyte layer is inserted between the positive electrode plate and the negative electrode plate to manufacture a battery assembly. An electrolyte is injected into the polymer electrolyte layer of the battery assembly. The battery assembly is sealed completely to form a primary battery.
摘要:
Provided are a vacuum-sealing-type flexible-film primary battery and a method of manufacturing the same. The primary battery includes a battery assembly comprising a positive electrode plate including a positive electrode collector having a first conductive carbon layer disposed directly on a surface-treated inner surface of a first pouch and a positive electrode layer disposed on the first conductive carbon layer of the positive electrode collector, a negative electrode plate including a negative electrode collector having a second conductive carbon layer disposed directly on a surface-treated inner surface of a second pouch and a negative electrode layer disposed on the second conductive carbon layer of the negative electrode collector, and an adhesion/post-injection polymer electrolyte layer interposed between the positive electrode plate and the negative electrode plate, wherein the battery assembly is completely sealed. The flexible-film primary battery may employ the pouch as a collector film to improve flexibility. Also, the flexible-film primary battery may be completely sealed using the pouch to improve a retention period and cell performance. Furthermore, the flexible-film primary battery may be manufactured using a screen printing technique, thereby facilitating a roll-to-roll sequential process.
摘要:
Provided are a method of manufacturing a cathode active material for a lithium battery, and a cathode active material obtained by the method. The method includes forming a precursor of a one-dimensional nanocluster manganese dioxide with a chestnut-type morphology, inserting lithium into the formed precursor and synthesizing a one-dimensional nanocluster cathode active material particle with a chestnut morphology, coating a water-soluble polymer on a surface of the cathode active material particle, adsorbing a metal ion to the surface of the cathode active material particle coated with the water-soluble polymer, and sintering the cathode active material particle to obtain the one-dimensional nanocluster cathode active material with a chestnut morphology. The cathode active material manufactured by the above method is a one-dimensional nanocluster with a chestnut-type morphology, which has a uniform-thick metal oxide layer on its surface, thereby ensuring an improved capacity of the cathode active material and an excellent cycle characteristic.