摘要:
An LCD according to the present invention includes lower and upper panels facing each other and a liquid crystal layer interposed therebetween. The upper panel includes a black matrix formed on an inner surface of an insulating substrate, having openings corresponding to pixel areas, and blocking the light leakage between the pixel areas, a plurality of red, green, and blue color filter sequentially arranged in the pixel regions, a flat layer formed on the red, green and blue color filters, and a common electrode formed on the flat layer, made of transparent conductive material such as ITO (indium tin oxide) or IZO (indium zinc oxide), and supplied with a predetermined voltage for driving the liquid molecules in cooperation with the pixel electrodes. In addition, a light diffraction layer having micro structure of slit pattern or diffraction lattice is formed between the black matrix and the red, green, or blue color filters. The light diffraction layer is made of transparent conductive material such as ITO or IZO or transparent insulating material such as silicon nitride or silicon oxide. The gap between the slits or width of slits of the light diffraction layer is preferably equal to or less than seven microns and it is possible to have two or more different widths or gaps in the range of equal to or less than 7 microns.
摘要:
An LCD according to the present invention includes lower and upper panels facing each other and a liquid crystal layer interposed therebetween. The upper panel includes a black matrix formed on an inner surface of an insulating substrate, having openings corresponding to pixel areas, and blocking the light leakage between the pixel areas, a plurality of red, green, and blue color filter sequentially arranged in the pixel regions, a flat layer formed on the red, green and blue color filters, and a common electrode formed on the flat layer, made of transparent conductive material such as ITO (indium tin oxide) or IZO (indium zinc oxide), and supplied with a predetermined voltage for driving the liquid molecules in cooperation with the pixel electrodes. In addition, a light diffraction layer having micro structure of slit pattern or diffraction lattice is formed between the black matrix and the red, green, or blue color filters. The light diffraction layer is made of transparent conductive material such as ITO or IZO or transparent insulating material such as silicon nitride or silicon oxide. The gap between the slits or width of slits of the light diffraction layer is preferably equal to or less than seven microns and it is possible to have two or more different widths or gaps in the range of equal to or less than 7 microns.
摘要:
A gray scale voltage generator and a method of generating a gray scale voltage in a transmissive and reflective type liquid crystal display device are disclosed. A transmissive mode gray scale data are transformed into real reflective mode gray scale data. An integer part is extracted from the real reflective mode gray scale data as a first reflective mode gray scale data. The first reflective mode gray scale data and temporary reflective mode gray scale data are mixed in a predetermined ratio by N-frame period. The temporary reflective mode gray scale data has a sum of one and the first reflective mode gray scale data. Pseudo gray scale data are inserted into the second reflective mode gray scale data. Therefore, superior display quality is provided in both transmissive and reflective mode.
摘要:
A method of improving the viewing angle of a vertically-aligned liquid crystal display device is presented. The method involves designing a uniaxial compensation film to provide a retardation value of 200 nm or less for light having a wavelength of about 550 nm. Using this uniaxial compensation film, a display device can be built by obtaining a liquid crystal panel with liquid crystal molecules contained between glass substrates, coupling the uniaxial compensation film to at least one of the glass substrates, and coupling a polarization film and electrodes to the compensation film. Preferably, the uniaxial compensation film has a thickness less than or equal to 50 microns. Where there are multiple compensation films, the total thickness and the total retardation values should be considered.
摘要:
A gray scale voltage generator and a method of generating a gray scale voltage in a transmissive and reflective type liquid crystal display device are disclosed. A transmissive mode gray scale data are transformed into real reflective mode gray scale data. An integer part is extracted from the real reflective mode gray scale data as a first reflective mode gray scale data. The first reflective mode gray scale data and temporary reflective mode gray scale data are mixed in a predetermined ratio by N-frame period. The temporary reflective mode gray scale data has a sum of one and the first reflective mode gray scale data. Pseudo gray scale data are inserted into the second reflective mode gray scale data. Therefore, superior display quality is provided in both transmissive and reflective mode.
摘要:
A method of improving the viewing angle of a vertically-aligned liquid crystal display device is presented. The method involves designing a uniaxial compensation film to provide a retardation value of 200 nm or less for light having a wavelength of about 550 nm. Using this uniaxial compensation film, a display device can be built by obtaining a liquid crystal panel with liquid crystal molecules contained between glass substrates, coupling the uniaxial compensation film to at least one of the glass substrates, and coupling a polarization film and electrodes to the compensation film. Preferably, the uniaxial compensation film has a thickness less than or equal to 50 microns. Where there are multiple compensation films, the total thickness and the total retardation values should be considered.
摘要:
An LCD according to an embodiment of the present invention includes a liquid crystal panel assembly including two panels facing each other and a liquid crystal layer interposed between the two panels and having positive dielectric anisotropy. A pair of polarization films are attached to the outer surfaces of the liquid crystal panel assembly, respectively. A positive or negative a-plate compensation film having reverse wavelength dispersion that ¥Än increases as the light wavelength increases and a negative hybrid c-plate compensation film are inserted between the liquid crystal panel assembly and each of the polarization films.
摘要:
A gray scale voltage generator and a method of generating a gray scale voltage in a transmissive and reflective type liquid crystal display device are disclosed. A transmissive mode gray scale data are transformed into real reflective mode gray scale data. An integer part is extracted from the real reflective mode gray scale data as a first reflective mode gray scale data. The first reflective mode gray scale data and temporary reflective mode gray scale data are mixed in a predetermined ratio by N-frame period. The temporary reflective mode gray scale data has a sum of one and the first reflective mode gray scale data. Pseudo gray scale data are inserted into the second reflective mode gray scale data. Therefore, superior display quality is provided in both transmissive and reflective mode.
摘要:
A method of improving the viewing angle of a vertically-aligned liquid crystal display device is presented. The method involves designing a uniaxial compensation film to provide a retardation value of 200 nm or less for light having a wavelength of about 550 nm. Using this uniaxial compensation film, a display device can be built by obtaining a liquid crystal panel with liquid crystal molecules contained between glass substrates, coupling the uniaxial compensation film to at least one of the glass substrates, and coupling a polarization film and electrodes to the compensation film. Preferably, the uniaxial compensation film has a thickness less than or equal to 50 microns. Where there are multiple compensation films, the total thickness and the total retardation values should be considered.
摘要:
An LCD according to an embodiment of the present invention includes a liquid crystal panel assembly including two panels facing each other and a liquid crystal layer interposed between the two panels and having positive dielectric anisotropy. A pair of polarization films are attached to the outer surfaces of the liquid crystal panel assembly, respectively. A positive or negative a-plate compensation film having reverse wavelength dispersion that ¥Än increases as the light wavelength increases and a negative hybrid c-plate compensation film are inserted between the liquid crystal panel assembly and each of the polarization films.