摘要:
An optical apparatus including an image forming optical system having a movable optical element, and a driving mechanism which moves the optical element is disclosed. The apparatus comprises a first block which obtains a linear evaluation value by normalizing, by a first tolerance, an aberration expressed by a linear function of a position of the movable optical element out of aberrations of the optical system, and a quadratic evaluation value by normalizing, by a second tolerance, an aberration expressed by a quadratic function of the position out of the aberrations of the optical system, a second block which obtains a minimum value of a dummy variable by linear programming using an upper limit value of the linear evaluation value as the dummy variable, and a third block which determines a position of the optical element to be moved by the driving mechanism so as to minimize a weighted sum of the quadratic evaluation values with respect to a plurality of image heights by using, as the upper limit value of the linear evaluation value, a value prepared by adding a relaxation amount to the minimum value of the dummy variable that is obtained by the second block. The third block minimizes the weighted sum of the quadratic evaluation values by adjusting the weights assigned to the quadratic evaluation values and the relaxation amount.
摘要:
An optical apparatus including an image forming optical system having a movable optical element, and a driving mechanism which moves the optical element is disclosed. The apparatus comprises a first block which obtains a linear evaluation value by normalizing, by a first tolerance, an aberration expressed by a linear function of a position of the movable optical element out of aberrations of the optical system, and a quadratic evaluation value by normalizing, by a second tolerance, an aberration expressed by a quadratic function of the position out of the aberrations of the optical system, a second block which obtains a minimum value of a dummy variable by linear programming using an upper limit value of the linear evaluation value as the dummy variable, and a third block which determines a position of the optical element to be moved by the driving mechanism so as to minimize a weighted sum of the quadratic evaluation values with respect to a plurality of image heights by using, as the upper limit value of the linear evaluation value, a value prepared by adding a relaxation amount to the minimum value of the dummy variable that is obtained by the second block. The third block minimizes the weighted sum of the quadratic evaluation values by adjusting the weights assigned to the quadratic evaluation values and the relaxation amount.
摘要:
An optical apparatus which includes an image forming optical system having a movable optical element, and a driving mechanism configured to move the optical element. The apparatus includes a first block which measures a wavefront aberration of the optical system. A second block obtains a linear evaluation value of an aberration expressed by a linear function of a position of the movable optical element out of aberrations of the optical system, and a quadratic evaluation value of a square of a root mean square of the wavefront aberration measured by the first block expressed by a quadratic function of the position. A third block uses a dummy variable as an upper limit value of the linear evaluation value and obtains a minimum value of the dummy variable by a linear programming. A fourth block determines a position of the optical element to be moved by the driving mechanism.
摘要:
An optical apparatus including an image forming optical system having a movable optical element, and a driving mechanism. A first block obtains a linear evaluation value by normalizing, by a first tolerance, an aberration expressed by a linear function of a position of the movable optical element and normalizing, by a second tolerance, an aberration expressed by a quadratic function of the position out of the aberrations of the optical system. A second block obtains a minimum value of a dummy variable by linear programming. A third block determines a position of the optical element to be moved by the driving mechanism using a value prepared by adding a relaxation amount to the minimum value obtained by the second block and minimizes the weighted sum of the quadratic evaluation values by adjusting the weights assigned to the quadratic evaluation values and a relaxation amount.
摘要:
The present invention provides an exposure apparatus comprising a projection optical system including an optical element of which at least one of a position, orientation, and shape can be regulated, a regulator configured to regulate the at least one of the position, orientation, and shape of the optical element, and a controller configured to calculate, using quadratic programming, a regulation amount of the optical element that minimizes a value of an objective function expressed by a first dummy variable serving as an upper limit of a linear optical characteristic value of the projection optical system, and a second dummy variable serving as an upper limit of a quadratic optical characteristic value of the projection optical system, and to control the regulator based on the calculated regulation amount.
摘要:
The present invention provides an exposure apparatus comprising a projection optical system including an optical element of which at least one of a position, orientation, and shape can be regulated, a regulator configured to regulate the at least one of the position, orientation, and shape of the optical element, and a controller configured to calculate, using quadratic programming, a regulation amount of the optical element that minimizes a value of an objective function expressed by a first dummy variable serving as an upper limit of a linear optical characteristic value of the projection optical system, and a second dummy variable serving as an upper limit of a quadratic optical characteristic value of the projection optical system, and to control the regulator based on the calculated regulation amount.
摘要:
A projection system for projecting a pattern of a mask onto a substrate. The projection system includes a projection optical system disposed between the mask and the substrate, and an optical element for correcting aberration produced in the projection optical system. The optical element has different refracting powers in two orthogonal directions or has a refracting power in one direction of two orthogonal directions and no refracting power in the other of the two orthogonal directions. The optical element is disposed between the mask and the substrate, in which an optical axis of the optical element is inclined with respect to an optical axis of the projection optical system.
摘要:
A projection system for projecting a pattern of a mask onto a substrate. The projection system includes a projection optical system disposed between the mask and the substrate, and an optical element for correcting aberration produced in the projection optical system. The optical element has different refracting powers in two orthogonal directions or has a refracting power in one direction of two orthogonal directions and no refracting power in the other of the two orthogonal directions. The optical element is disposed between the mask and the substrate. An optical axis of the optical element is inclined with respect to an optical axis of the projection optical system.
摘要:
An electrophotographic device has an electrophotographic photosensitive member and a blade for charging arranged in contact with the photosensitive member, the photosensitive member being charged by application of a voltage on the blade for charging, wherein the ten point surface average roughness Rz of the photosensitive member is 0.3 .mu.m to 5.0 .mu.m.
摘要:
An electrophotographic photosensitive member comprises a photosensitive layer containing an organic photoconductor provided on an electroconductive substrate, wherein said photosensitive layer contains a compound represented by the formula (1) shown below in an amount ranging from 0.1 to 10% by weight based on the total weight of the photosensitive layer added;Formula: ##STR1## wherein R represents ##STR2## X.sub.1, X.sub.2 and X.sub.3 each represent hydrogen atom or methyl group, X.sub.4 represents ##STR3## X.sub.5 represents hydrogen atom, an alkyl group or an alkenyl group.