摘要:
Embodiments of the invention pertain to a method and apparatus for image reconstruction for parallel Magnetic Resonance Imaging (MRI). In a specific embodiment, a method for image reconstruction in image space is provided. The method can suppress aliasing caused by undersampling when the number of sampling lines in k-space is reduced to increase the imaging speed. In an embodiment, suppressing aliasing from under-sampling can improve the quality of images reconstructed from the data acquired using a MRI coil array. In an embodiment, the method operates in image space and achieves a good resolution. In the reconstruction, the sum of square errors can be minimized within a region of interest, which can allow the image reconstruction to be optimized in a particular imaging region of interest by sacrificing the reconstruction of other regions. In a further embodiment, image reconstruction can be implemented region by region, allowing global optimization by spending a longer time in reconstruction.
摘要:
The subject invention pertains to a method and apparatus for producing sensitivity maps with respect to medical imaging. The subject invention relates to a method for applying an inpainting model to correct images in parallel imaging. Some images, such as coil sensitivity maps and intensity correction maps, have no signal at some places and may have noise. Advantageously, the subject invention allows an accurate method to fill in holes in sensitivity maps, where holes can arise when, for example, the pixel intensity magnitudes for two images being used to create the sensitivity map are zero. A specific embodiment of the subject invention can accomplish de-noise, interpolation, and extrapolation simultaneously for these types of maps such that the local texture can be carefully protected.
摘要:
The subject invention pertains to method and apparatus for parallel imaging. The subject method can be utilized with imaging systems utilizing parallel imaging techniques. In a specific embodiment, the subject invention can be used in magnetic resonance imaging (MRI). A specific embodiment of the subject invention can reduce parallel reconstruction CPU and system resources usage by reducing the number of channels employed in the parallel reconstruction from the M channel signals to a lower number of channel signals. In a specific embodiment, sensitivity map information can be used in the selection of the M channel signals to be used, and how the selected channel signals are to be combined, to create the output channel signals. In an embodiment, for a given set of radio-frequency (RF) elements, an optimal choice of reconstructed channel modes can be made using prior view information and/or sensitivity data for the given slice. The subject invention can utilize parallel imaging speed up in multiple directions.
摘要:
The subject invention pertains to an imaging technique and apparatus which can utilize an array of RF probes to measure the non-resonant thermal noise which is produced within a sample, such as a body, and produce a non-resonant thermal noise correlation. The detected noise correlation is a function of the spatial overlap of the electromagnetic fields of the probes and the spatial distribution of the conductivity of the sample. The subject technique, which can be referred to as Noise Tomography (NT), can generate a three-dimensional map of the conductivity of the sample. Since the subject invention utilizes detection of the thermal noise generated within the body, the subject method can be non-invasive and can be implemented without requiring external power, chemicals, or radionuclides to be introduced into the body. The subject imaging method can be used as a stand along technique or can be used in conjunction with other imaging techniques.
摘要:
Magnetic resonance (MR) imaging performed in cooperation with an MR scanner (10) uses a method comprising: (i) acquiring sensitivity maps (34) for a plurality of radio frequency coils using a MR pre scan (50) performed by the MR scanner; (ii) acquiring an MR imaging data set (38) using the plurality of radio frequency coils and the MR scanner; and (iii) reconstructing (62, 78) the MR imaging data set using partially parallel image reconstruction employing the sensitivity maps and a correction for subject motion between the acquiring (i) and the acquiring (ii).
摘要:
Magnetic resonance (MR) calibration data are acquired using a plurality of radio frequency receive coils, and both coil sensitivity maps and reference projection vectors are generated based on the MR calibration data. During imaging, extra navigator projection vectors are acquired, or part of the imaging data can be used as navigator projection vectors. Partially parallel imaging (PPI) can performed to enhance the navigation information. The navigator projection vectors and the reference projection vectors are sensitivity weighted using the coil sensitivity maps to generate navigator sensitivity weighted projection vectors (navigator SWPV) and reference sensitivity weighted projection vectors (reference SWPV) respectively, and these are compared to generate subject position information. The subject motions are compensated prospectively or retrospectively using the generated subject position information. The motion compensation may be prospective, performed by adjusting an imaging volume of the PPI based on the subject position information.
摘要:
A plurality of coil elements (18, 18′) and corresponding receivers (26) define a plurality of channels, each carrying a corresponding partial k-space data set (60, 64). One or more processors (30) generate (80) a first image representation (76) based on the plurality of partial k-space data sets, generate a relative sensitivity map (82) for each of the channels, project (90) the first image representation (76) with each of the relative sensitivity maps (82) to generate a plurality of recreated k-space data sets (92), and each partial k-space data and the corresponding recreated k-space data set are combined to generate substituted k-space data sets (96). The substituted k-space data sets are reconstructed (100) into a plurality of images (102) which are combined (104) to create a final image (106).
摘要:
A method of operating a communication system is disclosed. A first communication session between a first base station and a mobile station is established. A service session between a first access network and the mobile station is established. When the mobile station moves to the service area of a new base station, a second communication session between a second base station and the mobile station is established. A distance between the first base station and the second base station is determined. If the distance exceeds a criteria, the service session is handed off a second access network. The criteria, which must be greater than zero, corresponds to the number of base station service areas separating the first base station and the second base station.
摘要:
An Ethernet transmission apparatus having a quick protection and fair attribute as well as a corresponding method are disclosed. The apparatus comprises a sorter, MPLS processing module and a SDH processing module, wherein, the MPLS processing module includes a VC tag packaging unit, a multiplexing unit, a tag managing unit, a scheduler, an MPLS protective unit, an MPLS signaling unit and a Fair algorithm unit. The present invention sorts the Ethernet transactions and labels VC tags by the VC tag packaging unit so as to form a PW LSP. PW LSP with a plurality of identical source and target ends are multiplexed into a tunnel LSP. MPLS signaling unit counts the network nodes that LSP passes by and calculates a protective LSP. MPLS protective unit selects an active LSP or a protective LSP and enters the scheduler for queuing. The FAIR algorithm controls the allotment of the bandwidth so as to secure the fairness of the transactions.
摘要:
The subject invention pertains to a method for acquiring and reconstructing a collection of time crucial magnetic resonance images. The subject invention is applicable for speeding up acquisition of or improving the quality of the set of images. In one specific embodiment, the subject method is used to reduce the time required to generate a cardiac CINE sequence of phases of the heart.