Abstract:
Disclosed are detecting apparatus for detecting statuses of an optical disc and methods thereof, which can avoid or reduce erroneous status decisions at the edge of a blank region. The detecting apparatus includes a blank detector, for detecting a blank region of the optical disc to generate a blank detection signal; an edge detector, for detecting a transition of the blank detection signal to generate an edge detection signal; a control circuit, in response to the edge detection signal for outputting control signals; and a defect detector in response to the control signals for detecting defect region of the optical disc to generate a defect decision signal.
Abstract:
Disclosed are detecting apparatus for detecting statuses of an optical disc and methods thereof, which can avoid or reduce erroneous status decisions at the edge of a blank region. The detecting apparatus includes a blank detector, for detecting a blank region of the optical disc to generate a blank detection signal; an edge detector, for detecting a transition of the blank detection signal to generate an edge detection signal; a control circuit, in response to the edge detection signal for outputting control signals; and a defect detector in response to the control signals for detecting defect region of the optical disc to generate a defect decision signal.
Abstract:
The invention provides an optical measurement device for measuring light to be inspected. The optical measurement device comprises a light receiving module, a light splitting module, and a plurality of color filters. The light receiving module is used for converting the light to be inspected into a first parallel light. The light splitting module is used for splitting the first parallel light into a plurality of parallel lights to be inspected. Each color filter receives at least one of the plurality of parallel lights to be inspected. The plurality of parallel lights to be inspected filtered by the plurality of color filters are used to calculate tristimulus values in the CIE color space.
Abstract:
A method and system for calibrating an initial driving signal for driving an optical pick-up head of an optical disk drive is provided. On one embodiment, said optical disk drive is utilized for reading or writing data on an optical disk, the optical disk includes a plurality of auto power control areas (APC areas) and a plurality of data areas, and the APC areas and the data areas are interleaved in between. In at least one of the APC areas that before the data areas for a normal data writing, an initial driving signal is used for the normal data writing to drive the optical pick-up head to emit laserbeam. A detected level of the laserbeam is then obtained. An update initial driving signal is then calibrated according to the detected level and a target level.
Abstract:
An extract prepared from the root barks of Morus australis Poir. and its use as an anti-bacteria agent, and use of a compound Kuwanon H having the following formula (I) separated from the extract as an anti-bacteria agent:
Abstract:
A method and system for calibrating an initial driving signal for driving an optical pick-up head of an optical disk drive is provided. On one embodiment, said optical disk drive is utilized for reading or writing data on an optical disk, the optical disk includes a plurality of auto power control areas (APC areas) and a plurality of data areas, and the APC areas and the data areas are interleaved in between. In at least one of the APC areas that before the data areas for a normal data writing, an initial driving signal is used for the normal data writing to drive the optical pick-up head to emit laserbeam. A detected level of the laserbeam is then obtained. An update initial driving signal is then calibrated according to the detected level and a target level.
Abstract:
A signal processing device includes a processing circuit and a signal generating circuit. The processing circuit is implemented for determining a position of at least one defective area on an optical storage medium according to a defect signal, and accordingly recording defect position information of the at least one defective area. The signal generating circuit is coupled to the processing circuit, and implemented for generating an output signal according to at least the recorded defect position information of the at least one defective area.
Abstract:
A signal processing apparatus includes sample and hold units for holding a plurality of analog photo diode signals. A signal holding controller generates control signals to the sample and hold units for holding the analog photo diode signals. Analog adjusting modules adjust the held analog photo diode signals. A multiplexer selectively couples one input end of the multiplexer to the output end of the multiplexer for outputting the adjusted analog photo diode signals. An analog to digital converter converts the adjusted analog photo diode signals into digital photo diode signals.
Abstract:
A device for detecting wobbles on an optical disc is provided, where the device is utilized for generating a wobble signal according to a plurality of detection signals. The device includes an analog signal processing circuit, a pair of analog-to-digital converters (ADCs), and a digital signal processing circuit. The analog signal processing circuit is arranged to perform analog signal processing on the detection signals to generate a plurality of output signals. In addition, the pair of ADCs are arranged to digitalize the output signals to generate a plurality of digital values. Additionally, the digital signal processing circuit is arranged to perform digital signal processing on the digital values and generate an arithmetic output, where the arithmetic output is utilized for generating the wobble signal or utilized as the wobble signal. An associated method for detecting wobbles on an optical disc is further provided.
Abstract:
An electrical device and a loop control method are provided. A data signal is obtained from a front end. A variable gain amplifier amplifies the data signal based on a gain value. An analog to digital converter samples the amplified data signal output therefrom to generate a digital data signal. A peak bottom detector detects a peak level and a bottom level of the digital data signal. A threshold controller compares the peak and bottom levels with a threshold value, and generates a first control signal accordingly. An auto gain controller updates the gain value based on the peak and bottom levels with a first step size. The first step size is determined by the first control signal.