Abstract:
Methods and apparatus to perform closed-loop transmit diversity with frequency-domain equalizers in high-speed downlink packet access (HSDPA) receivers are disclosed. An example method comprises receiving a first signal representative of a first code division multiple access (CDMA) signal received from a first transmit antenna and a second signal representative of a second CDMA signal received from a second transmit antenna, computing a first channel estimate for a first path from the first transmit antenna to the receiver, computing a second channel estimate for a second path from the second transmit antenna to the receiver, and computing a frequency-domain equalizer (FDE) coefficient for the first path based on the first and the second channel estimates.
Abstract:
Methods and apparatus to perform frequency-domain equalization in high-speed downlink packet access (HSDPA) receivers for wireless channels with large delay-spreads are disclosed. An example method comprises computing a first frequency-domain equalizer (FDE) coefficient for a first set of multipaths, computing a second FDE coefficient for a second set of multipaths, computing a first equalized signal by equalizing a received code division multiple access (CDMA) signal with the first FDE coefficient, computing a second equalized signal by equalizing the received CDMA signal with the second FDE coefficient, delaying the first equalized signal by a delay difference between the first and the second sets, and combining the delayed first equalized signal and the second equalized signal.
Abstract:
Methods and apparatus to perform fractional-spaced channel estimation for frequency-domain equalizers in high-speed downlink packet access (HSDPA) receivers are disclosed. An example method comprises computing a first fractionally-spaced time-domain channel estimate from an oversampled CDMA signal, and computing a first chip-interval frequency-domain equalizer (FDE) coefficient from the first fractionally-spaced channel estimate.
Abstract:
Methods and apparatus to perform frequency-domain equalization in high-speed downlink packet access (HSDPA) receivers for wireless channels with large delay-spreads are disclosed. An example method comprises computing a first frequency-domain equalizer (FDE) coefficient for a first set of multipaths, computing a second FDE coefficient for a second set of multipaths, computing a first equalized signal by equalizing a received code division multiple access (CDMA) signal with the first FDE coefficient, computing a second equalized signal by equalizing the received CDMA signal with the second FDE coefficient, delaying the first equalized signal by a delay difference between the first and the second sets, and combining the delayed first equalized signal and the second equalized signal.
Abstract:
Methods and apparatus to perform noise estimation for frequency-domain equalizers of high-speed downlink packet access (HSDPA) receivers are disclosed. An example method comprises measuring a total power associated with a code division multiple access (CDMA) signal received through a plurality of multipaths, measuring a plurality of channel responses for respective ones of the plurality of multipaths, measuring a plurality of noise plus inter-path interference powers for the respective ones of the plurality of multipaths, and estimating an additive noise power for the received CDMA signal based on the total power, the plurality of channel responses and the plurality of noise plus inter-path interference powers.
Abstract:
Processors, systems and methods are provided for thread level parallel processing. A processor may comprise a plurality of reconfigurable units that may include a plurality of processing elements (PEs) and a plurality of memory ports (MPs) for the plurality of PEs to access a memory unit. Each of the plurality of reconfigurable units may comprise a configuration buffer and a reconfiguration counter. The processor may further comprise a sequencer coupled to the configuration buffer of each of the plurality of reconfigurable units and configured to distribute a plurality of configurations to the plurality of reconfigurable units for the plurality of PEs and the plurality of MPs to execute a sequence of instructions.
Abstract:
XPath evaluation in an XML data repository includes parsing an input XPath query using a simple path file to generate an execution tree about the XPath query, where the simple path file includes an XML file that is generated based on the hierarchical architecture of a plurality of XML files in the data repository, and the names of the nodes in the generated XML file are generated by recording the tag information of respective nodes in the plurality of XML files in the data repository. Execution of an execution tree for the data repository generates a final evaluation result.
Abstract:
A method of transmitting data includes storing high-priority data blocks in a high-priority queue, storing low-priority data blocks in a low-priority queue, and generating a first data unit that includes one or more of the high-priority data blocks and one or more of the low-priority data blocks. Generating the first data unit includes arranging the one or more high-priority data blocks and the one or more low-priority data blocks in a sequence in which the one or more high-priority data blocks precede the one or more low-priority data blocks. Generating the first data unit further includes indexing the one or more high-priority data blocks and the one or more low-priority data blocks in accordance with the sequence. The first data unit is transmitted.
Abstract:
Systems and methods for modeling the occurrence of common image components (e.g., sub-regions) in order to improve visual object recognition are disclosed. In one example, a query image may be matched to a training image of an object. A matched region within the training image to which the query image matches may be determined and a determination may be made whether the matched region is located within an annotated image component of the training image. When the matched region matches only to the image component, an annotation associated with the component may be identified. In another example, sub-regions within a plurality of training image corpora may be annotated as common image components including associated information (e.g., metadata). Matching sub-regions appearing in many training images of objects may be down-weighted in the matching process to reduce possible false matches to query images including common image components.
Abstract:
Systems and methods for modeling the occurrence of common image components (e.g., sub-regions) in order to improve visual object recognition are disclosed. In one example, a query image may be matched to a training image of an object. A matched region within the training image to which the query image matches may be determined and a determination may be made whether the matched region is located within an annotated image component of the training image. When the matched region matches only to the image component, an annotation associated with the component may be identified. In another example, sub-regions within a plurality of training image corpora may be annotated as common image components including associated information (e.g., metadata). Matching sub-regions appearing in many training images of objects may be down-weighted in the matching process to reduce possible false matches to query images including common image components.