摘要:
The present invention provides a spheric catalyst component as well as a catalyst for olefin polymerization. The spheric catalyst component comprises at least one titanium compound and optionally at least one electron donor compound supported on an active magnesium halide spheric carrier, wherein the active magnesium halide spheric carrier is solid particles obtained by dispersing a melt of magnesium halide/alcohol adduct by rotation under high-gravity field. The catalyst has good particle morphology and narrow particle size distribution, and when used in olefin polymerization, especially in propylene polymerization, exhibits relatively high activity and stereoelectivity, and gives polymers having good particle morphology and high bulk density.
摘要:
The present invention provides a process for preparing particles of magnesium halide/alcohol adduct, said process comprising: preparing a melt of magnesium halide/alcohol adduct in an inert liquid medium, dispersing the mixture of the inert liquid medium and the melt of the magnesium halide/alcohol adduct by high-speed rotation under a high-gravity field to obtain a dispersion of magnesium halide/alcohol adduct melt; and the cooling the dispersion of the melt to form the particles of magnesium halide/alcohol adduct. The present invention further relates to the particles of magnesium halide/alcohol adduct prepared by the process of the present invention and the use thereof in the preparation of catalysts for olefin polymerization.
摘要:
The present invention provides a process for preparing particles of magnesium halide/alcohol adduct, said process comprising: preparing a melt of magnesium halide/alcohol adduct in an inert liquid medium, dispersing the mixture of the inert liquid medium and the melt of the magnesium halide/alcohol adduct by high-speed rotation under a high-gravity field to obtain a dispersion of magnesium halide/alcohol adduct melt; and the cooling the dispersion of the melt to form the particles of magnesium halide/alcohol adduct. The present invention further relates to the particles of magnesium halide/alcohol adduct prepared by the process of the present invention and the use thereof in the preparation of catalysts for olefin polymerization.
摘要:
The present invention is to provide a composite carrier, which is spheric particles obtainable by contacting magnesium halide with one or more electron donor compounds to form a solution, then mixing the solution with silica material having an average particle size of less than 10 microns to form a mixture, and drying the mixture through spray drying process. The present invention is also to provide a catalyst component comprising said composite carrier. When the catalyst component is used together with a cocatalyst component in propylene polymerization, it exhibits higher polymerization activity and stereospecificity, and can be used to prepare high impact resistent ethylene-propylene copolymer having high ethylene content.
摘要:
The present invention discloses cyclopentane carboxylate compounds. The 1-hydrocarbyl-2-acyloxy-cyclopentane carboxylates according to the invention have a general formula (I): wherein groups R1, R2 and R3, which are identical or different, are independently selected from the group consisting of linear or branched C1-C20alkyl, C3-C20cycloalkyl, C6-C20aryl, C7-C20alkaryl and C7-C20aralkyl. The present invention also discloses a process as well as intermediate compounds for preparing the compounds of formula (I), and use of the compounds (I) as electron donor in the preparation of catalysts for propylene polymerization.
摘要:
The present invention discloses cyclopentane carboxylate compounds. The 1-hydrocarbyl-2-acyloxy-cyclopentane carboxylates according to the invention have a general formula (I): wherein groups R1, R2 and R3, which are identical or different, are independently selected from the group consisting of linear or branched C1-C20alkyl, C3-C20cycloalkyl, C6-C20aryl, C7-C20alkaryl and C7-C20aralkyl. The present invention also discloses a process as well as intermediate compounds for preparing the compounds of formula (I), and use of the compounds (I) as electron donor in the preparation of catalysts for propylene polymerization.
摘要:
The present invention relates to a catalyst component and a catalyst for olefin polymerization. The catalyst component utilizes magnesium halide and silica as composite support, and the particle morphology thereof can be improved by regulating the ratio of magnesium halide to silica. Further, the purpose of stabilizing the rate of catalytic polymerization reaction and improving the particle morphology of polymer so as to meet the requirements on catalyst performance of various polymerization processes can be achieved through the combination of the supports of the catalyst. In the meantime, when used in the polymerization of propylene, the catalyst of the present invention exhibits a relatively high polymerization activity and high stereospecificity.
摘要:
The present invention relates to a catalyst component and a catalyst for olefin polymerization. The catalyst component utilizes magnesium halide and silica as composite support, and the particle morphology thereof can be improved by regulating the ratio of magnesium halide to silica. Further, the purpose of stabilizing the rate of catalytic polymerization reaction and improving the particle morphology of polymer so as to meet the requirements on catalyst performance of various polymerization processes can be achieved through the combination of the supports of the catalyst. In the meantime, when used in the polymerization of propylene, the catalyst of the present invention exhibits a relatively high polymerization activity and high stereospecificity.
摘要:
A potentiometric sensor for nitrogen oxide (NOX) measurement based on yttria-stabilized zirconia with a zeolite-modified electrode is presented. A potentiometric sensor of the present invention comprises a tube having an interior and an exterior. A cap member comprising yttria-stabilized zirconia closes one end of the tube. The cap member has an interior surface exposed to the interior of the tube where a first electrode is disposed. The first electrode is then covered with a zeolite layer. A second electrode is disposed on the exterior of the cap member.