摘要:
There is provided a method of manufacturing an optical module comprises a component fixing step in which an optical waveguide and at least one optical device are detachably held by a fixing member capable of holding an uncured light curable resin in a required position, and a core forming step in which light of a wavelength for curing the light curable resin is emitted from the leading end of the optical waveguide to the light curable resin uncured and thus the light curable resin is cured to form a shaftlike core. According thereto, the optical waveguide and the optical device are connected by the core.
摘要:
There is provided a method of manufacturing an optical module comprises a component fixing step in which an optical waveguide and at least one optical device are detachably held by a fixing member capable of holding an uncured light curable resin in a required position, and a core forming step in which light of a wavelength for curing the light curable resin is emitted from the leading end of the optical waveguide to the light curable resin uncured and thus the light curable resin is cured to form a shaftlike core. According thereto, the optical waveguide and the optical device are connected by the core.
摘要:
The optical branching-coupling device having a self-written optical waveguide core is formed without using half mirrors. In the optical branching-coupling device, three POFs are inserted into a housing having an approximately D-shaped sidewall. An approximately semi-columnar region V in the housing was filled with an uncured liquid light-curing acrylic resin. A laser beam was introduced from one of the POFs, and a cured material was formed of the end face of the POF. The diameter was equal to the core diameter of the POF. The cured material grew, resulting in the cured material reaching the end face of another one of the POFs, thereby forming an optical waveguide core. Next, a laser beam was introduced from the end face of the last one of the POFs. The cured material grew, resulting in a connection with the optical waveguide core, thereby forming the optical waveguide core.
摘要:
The present invention provides a light coupler and a manufacturing method thereof. The light coupler of the invention includes a plurality of light input terminals, a plurality of light output terminals, a plurality of half mirrors, and an optical wave guide connecting the plurality of the light input terminals, the plurality of the light output terminals and the plurality of the half mirrors. The optical wave guide has kinked line shape and each of the plurality of half mirrors is placed at a respective corner of the kinked line shape. Especially, the kinked line shape includes a polygon network.
摘要:
An optical communication device, comprises an optical fiber connector including a connector housing and an optical multiplexer/demultiplexer, the optical multiplexer/demultiplexer having a self-written optical waveguide core that is branched through an optical filter, connected to a leading end of an optical fiber, the leading end of the optical fiber and the multiplexer/demultiplexer being integrally housed in the connector housing; and a cap housing which houses light receiving/emitting elements provided with leads exposed from the cap housing, into which the optical fiber connector is to be removably inserted such that light receiving/emitting sides of the light receiving/emitting elements are disposed so as to oppose respective branched ends of the self-written waveguide core.
摘要:
The present invention provides a light coupler and a manufacturing method thereof. The light coupler of the invention includes a plurality of light input terminals, a plurality of light output terminals, a plurality of half mirrors, and an optical wave guide connecting the plurality of the light input terminals, the plurality of the light output terminals and the plurality of the half mirrors. The optical wave guide has kinked line shape and each of the plurality of half mirrors is placed at a respective corner of the kinked line shape. Especially, the kinked line shape includes a polygon network.
摘要:
Interference filters which are optical components are erected in advance on optical paths in a transparent container, and the transparent container is filled with a photo-curable resin solution. Further, a jig is prepared for manufacturing an optical waveguide device. The jig includes a housing, and holes. On this occasion, positions of the holes are set such that light input through the hole reaches the holes via the interference filters. Optical fibers are fitted into the holes of the housing and the housing is mounted on the transparent container. Next, light at a predetermined wavelength is guided into the optical fibers so that optical waveguides are formed in the photo-curable resin solution. Next, the photo-curable resin solution is exchanged for a low-refractive-index photo-curable resin solution and then the low-refractive-index photo-curable resin solution is solidified wholly by ultraviolet light. Finally, for example, an optical fiber, a light-receiving element, etc. are provided.
摘要:
Interference filters which are optical components are erected in advance on optical paths in a transparent container, and the transparent container is filled with a photo-curable resin solution. Further, a jig is prepared for manufacturing an optical waveguide device. The jig includes a housing, and holes. On this occasion, positions of the holes are set such that light input through the hole reaches the holes via the interference filters. Optical fibers are fitted into the holes of the housing and the housing is mounted on the transparent container. Next, light at a predetermined wavelength is guided into the optical fibers so that optical waveguides are formed in the photo-curable resin solution. Next, the photo-curable resin solution is exchanged for a low-refractive-index photo-curable resin solution and then the low-refractive-index photo-curable resin solution is solidified wholly by ultraviolet light. Finally, for example, an optical fiber, a light-receiving element, etc. are provided.
摘要:
An optical fiber, a mixture solution of the photosetting resins polymerizing in two different polymerization types, and a transparent container are prepared. The photosetting resins are not copolymerized, and have different activation wavelengths of the photopolymerization initiators for hardening. Employing a combination in which the activation wavelength of a photopolymerization initiator for a photosetting resin with higher refractive index after hardening is longer than the activation wavelength of a photopolymerization initiator for a photosetting resin with lower refractive index after hardening, a core portion can be only formed by hardening the photosetting resin with higher refractive index due to a difference between two wavelengths. Thereafter, a clad portion can be formed by hardening two kinds of photosetting resins, whereby an optical transmission device can be manufactured.
摘要:
In the condition that an acrylic transparent vessel is filled with a curable resin solution capable of being cured by a light, a plastic optical fiber is immersed in the curable resin solution. A laser beam is applied on the curable resin solution through the plastic optical fiber. The curable resin solution is cured gradually by the laser beam applied on the curable resin solution, so that an axial core is formed. Then, the transparent vessel is left at rest for predetermined time, or uncured part of the curable resin solution is removed from the transparent vessel and the transparent vessel is then filled with another curable resin solution. Then, ultraviolet rays are applied on the transparent vessel from the outside of the transparent vessel to cure the residual uncured part of the curable resin solution.